{"title":"拥挤会影响阿加西沙漠龟的健康、生长和行为","authors":"J. Mack, H. Schneider, K. Berry","doi":"10.2744/CCB-1248.1","DOIUrl":null,"url":null,"abstract":"Abstract Worldwide, scientists have headstarted threatened and endangered reptiles to augment depleted populations. Not all efforts have been successful. For the threatened Agassiz's desert tortoise (Gopherus agassizii), one challenge to recovery is poor recruitment of juveniles into adult populations, and this is being addressed through headstart programs. We evaluated 8 cohorts of juvenile desert tortoises from 1 to 8 yrs old in a headstart program at Edwards Air Force Base, California, for health, behavior, and growth. We also examined capacities of the headstart pens. Of 148 juveniles evaluated for health, 99.3% were below a prime condition index; 14.9% were lethargic and unresponsive; 59.5% had protruding spinal columns and associated concave scutes; 29.1% had evidence of ant bites; and 14.2% had moderate to severe injuries to limbs or shell. Lifetime growth rates for juveniles 1–8 yrs of age were approximately two times less than growth rates reported for wild populations. Tortoises in older cohorts had higher growth rates, and models indicated that high density in pens and burrow sharing negatively affected growth rates. Densities of tortoises in pens (205–2042/ha) were 350–3500 times higher than the average density recorded in the wild (< 1/ha) for tortoises of similar sizes. The predominant forage species available to juveniles were alien annual grasses, which are nutritionally inadequate for growth. We conclude that the headstart pens were of inadequate size, likely contained too few shelters, and lacked the necessary biomass of preferred forbs to sustain the existing population. Additional factors to consider for future reptilian headstart pens include vegetative cover, food sources, soil seed banks, and soil composition.","PeriodicalId":50703,"journal":{"name":"Chelonian Conservation and Biology","volume":"17 1","pages":"14 - 26"},"PeriodicalIF":0.9000,"publicationDate":"2018-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.2744/CCB-1248.1","citationCount":"4","resultStr":"{\"title\":\"Crowding Affects Health, Growth, and Behavior in Headstart Pens for Agassiz's Desert Tortoise\",\"authors\":\"J. Mack, H. Schneider, K. Berry\",\"doi\":\"10.2744/CCB-1248.1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Worldwide, scientists have headstarted threatened and endangered reptiles to augment depleted populations. Not all efforts have been successful. For the threatened Agassiz's desert tortoise (Gopherus agassizii), one challenge to recovery is poor recruitment of juveniles into adult populations, and this is being addressed through headstart programs. We evaluated 8 cohorts of juvenile desert tortoises from 1 to 8 yrs old in a headstart program at Edwards Air Force Base, California, for health, behavior, and growth. We also examined capacities of the headstart pens. Of 148 juveniles evaluated for health, 99.3% were below a prime condition index; 14.9% were lethargic and unresponsive; 59.5% had protruding spinal columns and associated concave scutes; 29.1% had evidence of ant bites; and 14.2% had moderate to severe injuries to limbs or shell. Lifetime growth rates for juveniles 1–8 yrs of age were approximately two times less than growth rates reported for wild populations. Tortoises in older cohorts had higher growth rates, and models indicated that high density in pens and burrow sharing negatively affected growth rates. Densities of tortoises in pens (205–2042/ha) were 350–3500 times higher than the average density recorded in the wild (< 1/ha) for tortoises of similar sizes. The predominant forage species available to juveniles were alien annual grasses, which are nutritionally inadequate for growth. We conclude that the headstart pens were of inadequate size, likely contained too few shelters, and lacked the necessary biomass of preferred forbs to sustain the existing population. Additional factors to consider for future reptilian headstart pens include vegetative cover, food sources, soil seed banks, and soil composition.\",\"PeriodicalId\":50703,\"journal\":{\"name\":\"Chelonian Conservation and Biology\",\"volume\":\"17 1\",\"pages\":\"14 - 26\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2018-05-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.2744/CCB-1248.1\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chelonian Conservation and Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.2744/CCB-1248.1\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ZOOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chelonian Conservation and Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.2744/CCB-1248.1","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ZOOLOGY","Score":null,"Total":0}
Crowding Affects Health, Growth, and Behavior in Headstart Pens for Agassiz's Desert Tortoise
Abstract Worldwide, scientists have headstarted threatened and endangered reptiles to augment depleted populations. Not all efforts have been successful. For the threatened Agassiz's desert tortoise (Gopherus agassizii), one challenge to recovery is poor recruitment of juveniles into adult populations, and this is being addressed through headstart programs. We evaluated 8 cohorts of juvenile desert tortoises from 1 to 8 yrs old in a headstart program at Edwards Air Force Base, California, for health, behavior, and growth. We also examined capacities of the headstart pens. Of 148 juveniles evaluated for health, 99.3% were below a prime condition index; 14.9% were lethargic and unresponsive; 59.5% had protruding spinal columns and associated concave scutes; 29.1% had evidence of ant bites; and 14.2% had moderate to severe injuries to limbs or shell. Lifetime growth rates for juveniles 1–8 yrs of age were approximately two times less than growth rates reported for wild populations. Tortoises in older cohorts had higher growth rates, and models indicated that high density in pens and burrow sharing negatively affected growth rates. Densities of tortoises in pens (205–2042/ha) were 350–3500 times higher than the average density recorded in the wild (< 1/ha) for tortoises of similar sizes. The predominant forage species available to juveniles were alien annual grasses, which are nutritionally inadequate for growth. We conclude that the headstart pens were of inadequate size, likely contained too few shelters, and lacked the necessary biomass of preferred forbs to sustain the existing population. Additional factors to consider for future reptilian headstart pens include vegetative cover, food sources, soil seed banks, and soil composition.
期刊介绍:
Chelonian Conservation and Biology is a biannual peer-reviewed journal of cosmopolitan and broad-based coverage of all aspects of conservation and biology of all chelonians, including freshwater turtles, marine turtles, and tortoises. Manuscripts may cover any aspects of turtle and tortoise research, with a preference for conservation or biology. Manuscripts dealing with conservation biology, systematic relationships, chelonian diversity, geographic distribution, natural history, ecology, reproduction, morphology and natural variation, population status, husbandry, community conservation initiatives, and human exploitation or conservation management issues are of special interest.