G. Anderson, O. Linton, M. G. Pittau, Yoon-Jae Whang, Roberto Zelli
{"title":"关于多边分布变化程度的单位自由评估","authors":"G. Anderson, O. Linton, M. G. Pittau, Yoon-Jae Whang, Roberto Zelli","doi":"10.1093/ECTJ/UTAB003","DOIUrl":null,"url":null,"abstract":"Multilateral comparison of outcomes drawn from multiple groups pervade the social sciences and measurement of their variability, usually involving functions of respective group location and scale parameters, is of intrinsic interest. However, such approaches frequently mask more fundamental differences that more comprehensive examination of relative group distributional structures reveal. Indeed, in categorical data contexts, location and scale based techniques are no longer feasible without artificial and questionable cardinalization of categories. Here, Ginis’ Transvariation measure is extended and employed in providing quantitative and visual multilateral comparison tools in discrete, continuous, categorical, univariate or multivariate settings which are particularly useful in paradigms where cardinal measure is absent. Two applications, one analyzing Eurozone cohesion in terms of the convergence or divergence of constituent nations income distributions, the other, drawn from a study of aging, health and income inequality in China, exemplify their use in a continuous and categorical data environment. Department of Economics, University of Toronto. Faculty of Economics, University of Cambridge. Department of Statistical Sciences, Sapienza University of Rome. Department of Economics, Seoul National University. 1","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2021-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"On unit free assessment of the extent of multilateral distributional variation\",\"authors\":\"G. Anderson, O. Linton, M. G. Pittau, Yoon-Jae Whang, Roberto Zelli\",\"doi\":\"10.1093/ECTJ/UTAB003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Multilateral comparison of outcomes drawn from multiple groups pervade the social sciences and measurement of their variability, usually involving functions of respective group location and scale parameters, is of intrinsic interest. However, such approaches frequently mask more fundamental differences that more comprehensive examination of relative group distributional structures reveal. Indeed, in categorical data contexts, location and scale based techniques are no longer feasible without artificial and questionable cardinalization of categories. Here, Ginis’ Transvariation measure is extended and employed in providing quantitative and visual multilateral comparison tools in discrete, continuous, categorical, univariate or multivariate settings which are particularly useful in paradigms where cardinal measure is absent. Two applications, one analyzing Eurozone cohesion in terms of the convergence or divergence of constituent nations income distributions, the other, drawn from a study of aging, health and income inequality in China, exemplify their use in a continuous and categorical data environment. Department of Economics, University of Toronto. Faculty of Economics, University of Cambridge. Department of Statistical Sciences, Sapienza University of Rome. Department of Economics, Seoul National University. 1\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2021-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"96\",\"ListUrlMain\":\"https://doi.org/10.1093/ECTJ/UTAB003\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"96","ListUrlMain":"https://doi.org/10.1093/ECTJ/UTAB003","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
On unit free assessment of the extent of multilateral distributional variation
Multilateral comparison of outcomes drawn from multiple groups pervade the social sciences and measurement of their variability, usually involving functions of respective group location and scale parameters, is of intrinsic interest. However, such approaches frequently mask more fundamental differences that more comprehensive examination of relative group distributional structures reveal. Indeed, in categorical data contexts, location and scale based techniques are no longer feasible without artificial and questionable cardinalization of categories. Here, Ginis’ Transvariation measure is extended and employed in providing quantitative and visual multilateral comparison tools in discrete, continuous, categorical, univariate or multivariate settings which are particularly useful in paradigms where cardinal measure is absent. Two applications, one analyzing Eurozone cohesion in terms of the convergence or divergence of constituent nations income distributions, the other, drawn from a study of aging, health and income inequality in China, exemplify their use in a continuous and categorical data environment. Department of Economics, University of Toronto. Faculty of Economics, University of Cambridge. Department of Statistical Sciences, Sapienza University of Rome. Department of Economics, Seoul National University. 1