基于机器学习的组织病理图像乳腺癌分类

Jia Rong Leow, W. Khoh, Ying-Han Pang, Hui-Yen Yap
{"title":"基于机器学习的组织病理图像乳腺癌分类","authors":"Jia Rong Leow, W. Khoh, Ying-Han Pang, Hui-Yen Yap","doi":"10.11591/ijece.v13i5.pp5885-5897","DOIUrl":null,"url":null,"abstract":"Breast cancer represents one of the most common reasons for death in the worldwide. It has a substantially higher death rate than other types of cancer. Early detection can enhance the chances of receiving proper treatment and survival. In order to address this problem, this work has provided a convolutional neural network (CNN) deep learning (DL) based model on the classification that may be used to differentiate breast cancer histopathology images as benign or malignant. Besides that, five different types of pre-trained CNN architectures have been used to investigate the performance of the model to solve this problem which are the residual neural network-50 (ResNet-50), visual geometry group-19 (VGG-19), Inception-V3, and AlexNet while the ResNet-50 is also functions as a feature extractor to retrieve information from images and passed them to machine learning algorithms, in this case, a random forest (RF) and k-nearest neighbors (KNN) are employed for classification. In this paper, experiments are done using the BreakHis public dataset. As a result, the ResNet-50 network has the highest test accuracy of 97% to classify breast cancer images.","PeriodicalId":38060,"journal":{"name":"International Journal of Electrical and Computer Engineering","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Breast cancer classification with histopathological image based on machine learning\",\"authors\":\"Jia Rong Leow, W. Khoh, Ying-Han Pang, Hui-Yen Yap\",\"doi\":\"10.11591/ijece.v13i5.pp5885-5897\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Breast cancer represents one of the most common reasons for death in the worldwide. It has a substantially higher death rate than other types of cancer. Early detection can enhance the chances of receiving proper treatment and survival. In order to address this problem, this work has provided a convolutional neural network (CNN) deep learning (DL) based model on the classification that may be used to differentiate breast cancer histopathology images as benign or malignant. Besides that, five different types of pre-trained CNN architectures have been used to investigate the performance of the model to solve this problem which are the residual neural network-50 (ResNet-50), visual geometry group-19 (VGG-19), Inception-V3, and AlexNet while the ResNet-50 is also functions as a feature extractor to retrieve information from images and passed them to machine learning algorithms, in this case, a random forest (RF) and k-nearest neighbors (KNN) are employed for classification. In this paper, experiments are done using the BreakHis public dataset. As a result, the ResNet-50 network has the highest test accuracy of 97% to classify breast cancer images.\",\"PeriodicalId\":38060,\"journal\":{\"name\":\"International Journal of Electrical and Computer Engineering\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Electrical and Computer Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.11591/ijece.v13i5.pp5885-5897\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Computer Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Electrical and Computer Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11591/ijece.v13i5.pp5885-5897","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 0

摘要

乳腺癌是全世界最常见的死亡原因之一。它的死亡率远远高于其他类型的癌症。早期发现可以增加接受适当治疗和生存的机会。为了解决这个问题,这项工作提供了一个基于卷积神经网络(CNN)深度学习(DL)的分类模型,可用于区分乳腺癌组织病理学图像的良性或恶性。此外,五种不同类型的预训练CNN架构已经被用来研究模型的性能来解决这个问题,它们是残余神经网络-50 (ResNet-50),视觉几何组-19 (VGG-19), Inception-V3和AlexNet,而ResNet-50还可以作为特征提取器从图像中检索信息并将其传递给机器学习算法,在这种情况下,采用随机森林(RF)和k近邻(KNN)进行分类。本文使用BreakHis公共数据集进行了实验。因此,ResNet-50网络在乳腺癌图像分类方面的测试准确率最高,达到97%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Breast cancer classification with histopathological image based on machine learning
Breast cancer represents one of the most common reasons for death in the worldwide. It has a substantially higher death rate than other types of cancer. Early detection can enhance the chances of receiving proper treatment and survival. In order to address this problem, this work has provided a convolutional neural network (CNN) deep learning (DL) based model on the classification that may be used to differentiate breast cancer histopathology images as benign or malignant. Besides that, five different types of pre-trained CNN architectures have been used to investigate the performance of the model to solve this problem which are the residual neural network-50 (ResNet-50), visual geometry group-19 (VGG-19), Inception-V3, and AlexNet while the ResNet-50 is also functions as a feature extractor to retrieve information from images and passed them to machine learning algorithms, in this case, a random forest (RF) and k-nearest neighbors (KNN) are employed for classification. In this paper, experiments are done using the BreakHis public dataset. As a result, the ResNet-50 network has the highest test accuracy of 97% to classify breast cancer images.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Electrical and Computer Engineering
International Journal of Electrical and Computer Engineering Computer Science-Computer Science (all)
CiteScore
4.10
自引率
0.00%
发文量
177
期刊介绍: International Journal of Electrical and Computer Engineering (IJECE) is the official publication of the Institute of Advanced Engineering and Science (IAES). The journal is open to submission from scholars and experts in the wide areas of electrical, electronics, instrumentation, control, telecommunication and computer engineering from the global world. The journal publishes original papers in the field of electrical, computer and informatics engineering which covers, but not limited to, the following scope: -Electronics: Electronic Materials, Microelectronic System, Design and Implementation of Application Specific Integrated Circuits (ASIC), VLSI Design, System-on-a-Chip (SoC) and Electronic Instrumentation Using CAD Tools, digital signal & data Processing, , Biomedical Transducers and instrumentation, Medical Imaging Equipment and Techniques, Biomedical Imaging and Image Processing, Biomechanics and Rehabilitation Engineering, Biomaterials and Drug Delivery Systems; -Electrical: Electrical Engineering Materials, Electric Power Generation, Transmission and Distribution, Power Electronics, Power Quality, Power Economic, FACTS, Renewable Energy, Electric Traction, Electromagnetic Compatibility, High Voltage Insulation Technologies, High Voltage Apparatuses, Lightning Detection and Protection, Power System Analysis, SCADA, Electrical Measurements; -Telecommunication: Modulation and Signal Processing for Telecommunication, Information Theory and Coding, Antenna and Wave Propagation, Wireless and Mobile Communications, Radio Communication, Communication Electronics and Microwave, Radar Imaging, Distributed Platform, Communication Network and Systems, Telematics Services and Security Network; -Control[...] -Computer and Informatics[...]
期刊最新文献
Ranking load in microgrid based on fuzzy analytic hierarchy process and technique for order of preference by similarity to ideal solution algorithm for load shedding problem Explainable extreme boosting model for breast cancer diagnosis Automatic optical inspection for detecting keycaps misplacement using Tesseract optical character recognition A thermally aware performance analysis of quantum cellular automata logic gates Technical and market evaluation of thermal generation power plants in the Colombia power system
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1