基于卷积神经网络的IRIS识别迁移学习

Maram.G Alaslni, Lamiaa A. Elrefaei
{"title":"基于卷积神经网络的IRIS识别迁移学习","authors":"Maram.G Alaslni, Lamiaa A. Elrefaei","doi":"10.5121/ijaia.2019.10505","DOIUrl":null,"url":null,"abstract":"Iris is one of the common biometrics used for identity authentication. It has the potential to recognize persons with a high degree of assurance. Extracting effective features is the most important stage in the iris recognition system. Different features have been used to perform iris recognition system. A lot of them are based on hand-crafted features designed by biometrics experts. According to the achievement of deep learning in object recognition problems, the features learned by the Convolutional Neural Network (CNN) have gained great attention to be used in the iris recognition system. In this paper, we proposed an effective iris recognition system by using transfer learning with Convolutional Neural Networks. The proposed system is implemented by fine-tuning a pre-trained convolutional neural network (VGG-16) for features extracting and classification. The performance of the iris recognition system is tested on four public databases IITD, iris databases CASIA-Iris-V1, CASIA-Iris-thousand and, CASIA-Iris-Interval. The results show that the proposed system is achieved a very high accuracy rate.","PeriodicalId":93188,"journal":{"name":"International journal of artificial intelligence & applications","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.5121/ijaia.2019.10505","citationCount":"11","resultStr":"{\"title\":\"Transfer Learning with Convolutional Neural Networks for IRIS Recognition\",\"authors\":\"Maram.G Alaslni, Lamiaa A. Elrefaei\",\"doi\":\"10.5121/ijaia.2019.10505\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Iris is one of the common biometrics used for identity authentication. It has the potential to recognize persons with a high degree of assurance. Extracting effective features is the most important stage in the iris recognition system. Different features have been used to perform iris recognition system. A lot of them are based on hand-crafted features designed by biometrics experts. According to the achievement of deep learning in object recognition problems, the features learned by the Convolutional Neural Network (CNN) have gained great attention to be used in the iris recognition system. In this paper, we proposed an effective iris recognition system by using transfer learning with Convolutional Neural Networks. The proposed system is implemented by fine-tuning a pre-trained convolutional neural network (VGG-16) for features extracting and classification. The performance of the iris recognition system is tested on four public databases IITD, iris databases CASIA-Iris-V1, CASIA-Iris-thousand and, CASIA-Iris-Interval. The results show that the proposed system is achieved a very high accuracy rate.\",\"PeriodicalId\":93188,\"journal\":{\"name\":\"International journal of artificial intelligence & applications\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.5121/ijaia.2019.10505\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International journal of artificial intelligence & applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5121/ijaia.2019.10505\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International journal of artificial intelligence & applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5121/ijaia.2019.10505","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

摘要

虹膜是一种常用的用于身份认证的生物识别技术。它有可能识别出具有高度自信的人。有效特征的提取是虹膜识别系统中最重要的阶段。不同的特征被用于虹膜识别系统。其中很多都是基于生物识别专家手工设计的特征。根据深度学习在物体识别问题中的成就,卷积神经网络(CNN)学习到的特征在虹膜识别系统中的应用受到了广泛的关注。本文提出了一种基于卷积神经网络迁移学习的虹膜识别系统。该系统通过对预训练的卷积神经网络(VGG-16)进行微调来实现特征提取和分类。在四个公共数据库IITD、CASIA-Iris-V1、CASIA-Iris-thousand and、CASIA-Iris-Interval上测试了虹膜识别系统的性能。结果表明,该系统具有很高的准确率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Transfer Learning with Convolutional Neural Networks for IRIS Recognition
Iris is one of the common biometrics used for identity authentication. It has the potential to recognize persons with a high degree of assurance. Extracting effective features is the most important stage in the iris recognition system. Different features have been used to perform iris recognition system. A lot of them are based on hand-crafted features designed by biometrics experts. According to the achievement of deep learning in object recognition problems, the features learned by the Convolutional Neural Network (CNN) have gained great attention to be used in the iris recognition system. In this paper, we proposed an effective iris recognition system by using transfer learning with Convolutional Neural Networks. The proposed system is implemented by fine-tuning a pre-trained convolutional neural network (VGG-16) for features extracting and classification. The performance of the iris recognition system is tested on four public databases IITD, iris databases CASIA-Iris-V1, CASIA-Iris-thousand and, CASIA-Iris-Interval. The results show that the proposed system is achieved a very high accuracy rate.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Characteristics of Networks Generated by Kernel Growing Neural Gas Identifying Text Classification Failures in Multilingual AI-Generated Content Subverting Characters Stereotypes: Exploring the Role of AI in Stereotype Subversion Performance Evaluation of Block-Sized Algorithms for Majority Vote in Facial Recognition Sentiment Analysis in Indian Elections: Unraveling Public Perception of the Karnataka Elections With Transformers
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1