随机全局优化范式的基于对立的多层灰狼优化器

Pub Date : 2022-01-01 DOI:10.4018/ijeoe.295982
Vasudha Bahl
{"title":"随机全局优化范式的基于对立的多层灰狼优化器","authors":"Vasudha Bahl","doi":"10.4018/ijeoe.295982","DOIUrl":null,"url":null,"abstract":"Researchers are increasingly using algorithms that are influenced by nature because of its ease and versatility, the key components of nature-inspired metaheuristic algorithms are investigated, involving divergence and adoption, investigation and utilization, and dissemination techniques. Grey Wolf Optimizer (GWO), a relatively recent algorithm influenced by the dominance structure and poaching deportment of grey wolves, is a very popular technique for solving realistic mechanical and optical technical challenges. Half of the recurrence in the GWO are committed to the exploration and the other half to exploitation, ignoring the importance of maintaining the correct equilibrium to ensure a precise estimate of the global optimum. To address this flaw, a Multi-tiered GWO (MGWO) is formulated, that further accomplishes an appropriate equivalence among exploration and exploitation, resulting in optimal algorithm efficiency. In comparison to familiar optimization methods, simulations relying on benchmark functions exhibit the efficacy, performance, and stabilization of MGWO.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Opposition-Based Multi-tiered Grey Wolf Optimizer for Stochastic Global Optimization Paradigms\",\"authors\":\"Vasudha Bahl\",\"doi\":\"10.4018/ijeoe.295982\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Researchers are increasingly using algorithms that are influenced by nature because of its ease and versatility, the key components of nature-inspired metaheuristic algorithms are investigated, involving divergence and adoption, investigation and utilization, and dissemination techniques. Grey Wolf Optimizer (GWO), a relatively recent algorithm influenced by the dominance structure and poaching deportment of grey wolves, is a very popular technique for solving realistic mechanical and optical technical challenges. Half of the recurrence in the GWO are committed to the exploration and the other half to exploitation, ignoring the importance of maintaining the correct equilibrium to ensure a precise estimate of the global optimum. To address this flaw, a Multi-tiered GWO (MGWO) is formulated, that further accomplishes an appropriate equivalence among exploration and exploitation, resulting in optimal algorithm efficiency. In comparison to familiar optimization methods, simulations relying on benchmark functions exhibit the efficacy, performance, and stabilization of MGWO.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4018/ijeoe.295982\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/ijeoe.295982","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

研究人员越来越多地使用受自然影响的算法,因为它简单易用,研究了受自然启发的元启发式算法的关键组成部分,包括发散和采用、调查和利用以及传播技术。灰狼优化器(GWO)是一种相对较新的算法,受灰狼的优势结构和偷猎行为的影响,是解决现实机械和光学技术挑战的一种非常流行的技术。GWO中的复发有一半致力于勘探,另一半致力于开发,忽略了保持正确平衡以确保精确估计全球最佳值的重要性。为了解决这个缺陷,制定了一个多层GWO(MGWO),它进一步实现了勘探和开发之间的适当等价,从而实现了最佳算法效率。与常见的优化方法相比,依赖于基准函数的模拟展示了MGWO的功效、性能和稳定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
Opposition-Based Multi-tiered Grey Wolf Optimizer for Stochastic Global Optimization Paradigms
Researchers are increasingly using algorithms that are influenced by nature because of its ease and versatility, the key components of nature-inspired metaheuristic algorithms are investigated, involving divergence and adoption, investigation and utilization, and dissemination techniques. Grey Wolf Optimizer (GWO), a relatively recent algorithm influenced by the dominance structure and poaching deportment of grey wolves, is a very popular technique for solving realistic mechanical and optical technical challenges. Half of the recurrence in the GWO are committed to the exploration and the other half to exploitation, ignoring the importance of maintaining the correct equilibrium to ensure a precise estimate of the global optimum. To address this flaw, a Multi-tiered GWO (MGWO) is formulated, that further accomplishes an appropriate equivalence among exploration and exploitation, resulting in optimal algorithm efficiency. In comparison to familiar optimization methods, simulations relying on benchmark functions exhibit the efficacy, performance, and stabilization of MGWO.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1