{"title":"熔盐加成GdAlO3:Tb3+荧光粉的发光性能","authors":"Jinkai Li, Wenzhi Wang, Z. Liu","doi":"10.1504/IJNM.2019.10018324","DOIUrl":null,"url":null,"abstract":"The (Gd1−xTbx)AlO3 (x = 0-0.12) were obtained through ammonium bicarbonate co-precipitation technology. The pure-phase (Gd1−xTbx)AlO3 with good dispersion could be obtained at relatively lower temperature of 1,000°C. Under optimum UV excitation into 275 nm, the photoluminescence (PL) spectra display a series of 5D4−7FJ transitions of Tb3+ in (Gd1−xTbx)AlO3 system with the strongest green emission at ~546 nm. The overlapping between 8S7/2−6IJ intra f-f transition of Gd3+ and 4f8-4f75d1 transition of Tb3+ at 275 nm suggesting the Gd3+ → Tb3+ energy transfer, and the quenching contents of Tb3+ was found to be ~10 at%. The luminescent property of GdAlO3:Tb3+ phosphor could be further improved with molten salt incorporation. The optimal composition of molten salts was determined to be the mixture of NaCl/Na2SO4 (5 wt% NaCl), and the mass ratio of mixture molten salts to precursor was 2:1. The relationship between the luminescent property and molten salts composition were studied in detail.","PeriodicalId":14170,"journal":{"name":"International Journal of Nanomanufacturing","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"The luminescent properties of GdAlO3:Tb3+ phosphors based on molten salts addition\",\"authors\":\"Jinkai Li, Wenzhi Wang, Z. Liu\",\"doi\":\"10.1504/IJNM.2019.10018324\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The (Gd1−xTbx)AlO3 (x = 0-0.12) were obtained through ammonium bicarbonate co-precipitation technology. The pure-phase (Gd1−xTbx)AlO3 with good dispersion could be obtained at relatively lower temperature of 1,000°C. Under optimum UV excitation into 275 nm, the photoluminescence (PL) spectra display a series of 5D4−7FJ transitions of Tb3+ in (Gd1−xTbx)AlO3 system with the strongest green emission at ~546 nm. The overlapping between 8S7/2−6IJ intra f-f transition of Gd3+ and 4f8-4f75d1 transition of Tb3+ at 275 nm suggesting the Gd3+ → Tb3+ energy transfer, and the quenching contents of Tb3+ was found to be ~10 at%. The luminescent property of GdAlO3:Tb3+ phosphor could be further improved with molten salt incorporation. The optimal composition of molten salts was determined to be the mixture of NaCl/Na2SO4 (5 wt% NaCl), and the mass ratio of mixture molten salts to precursor was 2:1. The relationship between the luminescent property and molten salts composition were studied in detail.\",\"PeriodicalId\":14170,\"journal\":{\"name\":\"International Journal of Nanomanufacturing\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-01-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Nanomanufacturing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1504/IJNM.2019.10018324\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Nanomanufacturing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/IJNM.2019.10018324","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
The luminescent properties of GdAlO3:Tb3+ phosphors based on molten salts addition
The (Gd1−xTbx)AlO3 (x = 0-0.12) were obtained through ammonium bicarbonate co-precipitation technology. The pure-phase (Gd1−xTbx)AlO3 with good dispersion could be obtained at relatively lower temperature of 1,000°C. Under optimum UV excitation into 275 nm, the photoluminescence (PL) spectra display a series of 5D4−7FJ transitions of Tb3+ in (Gd1−xTbx)AlO3 system with the strongest green emission at ~546 nm. The overlapping between 8S7/2−6IJ intra f-f transition of Gd3+ and 4f8-4f75d1 transition of Tb3+ at 275 nm suggesting the Gd3+ → Tb3+ energy transfer, and the quenching contents of Tb3+ was found to be ~10 at%. The luminescent property of GdAlO3:Tb3+ phosphor could be further improved with molten salt incorporation. The optimal composition of molten salts was determined to be the mixture of NaCl/Na2SO4 (5 wt% NaCl), and the mass ratio of mixture molten salts to precursor was 2:1. The relationship between the luminescent property and molten salts composition were studied in detail.