基于SMOTE-ENN和多层感知器神经网络的高等教育回避型人格障碍预测

IF 0.6 Q4 COMPUTER SCIENCE, INFORMATION SYSTEMS TEM Journal-Technology Education Management Informatics Pub Date : 2023-05-29 DOI:10.18421/tem122-47
S. Nuanmeesri, L. Poomhiran
{"title":"基于SMOTE-ENN和多层感知器神经网络的高等教育回避型人格障碍预测","authors":"S. Nuanmeesri, L. Poomhiran","doi":"10.18421/tem122-47","DOIUrl":null,"url":null,"abstract":"Adolescents in higher education are more prone to Avoidant Personality Disorder (AVPD), which strongly affects academic achievement. The goal of this study was to create models for accurate prediction of the likelihood of Avoidant Personality Disorder among students in higher education. Information Gain, Gain Ratio, and Wrapper Approach are used as feature selection methods combined with data resampling techniques and machine learning, including Multi-Layer Perceptron Neural Network, Naïve Bayes, Decision Tree, Random Forest, and Support Vector Machine. The findings revealed that the Wrapper approach gave higher accuracy than Information Gain and Gain Ratio approach. Further, using the Gain Ratio approach gives the model a slightly higher efficiency than the Information Gain. Furthermore, when comparing feature selection and data resampling, it was found that the model using feature selection had more higher model efficiency than data resampling alone. Additionally, combining the Synthetic Minority Over-sampling Technique with Edited Nearest Neighbor (SMOTE-ENN) considerably increased the model’s effectiveness. Finally, the model’s efficiency was at its maximum, with an accuracy of 95.52%, when the Wrapper approach was used in conjunction with the Synthetic Minority Over-sampling Technique, the Edited Nearest Neighbor algorithm, and the Multi-Layer Perceptron Neural Network.","PeriodicalId":45439,"journal":{"name":"TEM Journal-Technology Education Management Informatics","volume":" ","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2023-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Improving the Avoidant Personality Disorder Prediction for Higher Education Using SMOTE-ENN and Multi-Layer Perceptron Neural Network\",\"authors\":\"S. Nuanmeesri, L. Poomhiran\",\"doi\":\"10.18421/tem122-47\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Adolescents in higher education are more prone to Avoidant Personality Disorder (AVPD), which strongly affects academic achievement. The goal of this study was to create models for accurate prediction of the likelihood of Avoidant Personality Disorder among students in higher education. Information Gain, Gain Ratio, and Wrapper Approach are used as feature selection methods combined with data resampling techniques and machine learning, including Multi-Layer Perceptron Neural Network, Naïve Bayes, Decision Tree, Random Forest, and Support Vector Machine. The findings revealed that the Wrapper approach gave higher accuracy than Information Gain and Gain Ratio approach. Further, using the Gain Ratio approach gives the model a slightly higher efficiency than the Information Gain. Furthermore, when comparing feature selection and data resampling, it was found that the model using feature selection had more higher model efficiency than data resampling alone. Additionally, combining the Synthetic Minority Over-sampling Technique with Edited Nearest Neighbor (SMOTE-ENN) considerably increased the model’s effectiveness. Finally, the model’s efficiency was at its maximum, with an accuracy of 95.52%, when the Wrapper approach was used in conjunction with the Synthetic Minority Over-sampling Technique, the Edited Nearest Neighbor algorithm, and the Multi-Layer Perceptron Neural Network.\",\"PeriodicalId\":45439,\"journal\":{\"name\":\"TEM Journal-Technology Education Management Informatics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2023-05-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"TEM Journal-Technology Education Management Informatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18421/tem122-47\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"TEM Journal-Technology Education Management Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18421/tem122-47","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

接受高等教育的青少年更容易出现回避型人格障碍(AVPD),这对学业成绩有很大的影响。本研究的目的是建立模型,以准确预测高等教育学生中回避型人格障碍的可能性。采用信息增益、增益比和包装器方法作为特征选择方法,结合数据重采样技术和机器学习,包括多层感知器神经网络、Naïve贝叶斯、决策树、随机森林和支持向量机。结果表明,包装器方法比信息增益和增益比方法具有更高的准确性。此外,使用增益比方法使模型的效率略高于信息增益。此外,对比特征选择和数据重采样,发现使用特征选择的模型比单独使用数据重采样的模型效率更高。此外,将合成少数派过采样技术与编辑最近邻(SMOTE-ENN)相结合,大大提高了模型的有效性。最后,当Wrapper方法与合成少数派过采样技术、编辑近邻算法和多层感知器神经网络结合使用时,模型的效率达到最高,准确率为95.52%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Improving the Avoidant Personality Disorder Prediction for Higher Education Using SMOTE-ENN and Multi-Layer Perceptron Neural Network
Adolescents in higher education are more prone to Avoidant Personality Disorder (AVPD), which strongly affects academic achievement. The goal of this study was to create models for accurate prediction of the likelihood of Avoidant Personality Disorder among students in higher education. Information Gain, Gain Ratio, and Wrapper Approach are used as feature selection methods combined with data resampling techniques and machine learning, including Multi-Layer Perceptron Neural Network, Naïve Bayes, Decision Tree, Random Forest, and Support Vector Machine. The findings revealed that the Wrapper approach gave higher accuracy than Information Gain and Gain Ratio approach. Further, using the Gain Ratio approach gives the model a slightly higher efficiency than the Information Gain. Furthermore, when comparing feature selection and data resampling, it was found that the model using feature selection had more higher model efficiency than data resampling alone. Additionally, combining the Synthetic Minority Over-sampling Technique with Edited Nearest Neighbor (SMOTE-ENN) considerably increased the model’s effectiveness. Finally, the model’s efficiency was at its maximum, with an accuracy of 95.52%, when the Wrapper approach was used in conjunction with the Synthetic Minority Over-sampling Technique, the Edited Nearest Neighbor algorithm, and the Multi-Layer Perceptron Neural Network.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
TEM Journal-Technology Education Management Informatics
TEM Journal-Technology Education Management Informatics COMPUTER SCIENCE, INFORMATION SYSTEMS-
CiteScore
2.20
自引率
14.30%
发文量
176
审稿时长
8 weeks
期刊介绍: TEM JOURNAL - Technology, Education, Management, Informatics Is a an Open Access, Double-blind peer reviewed journal that publishes articles of interdisciplinary sciences: • Technology, • Computer and informatics sciences, • Education, • Management
期刊最新文献
Relationship Between Computational and Critical Thinking Towards Modelling Competency Among Pre-Service Mathematics Teachers Neural Networks Applicability for Design of Reinforced Concrete Sections for Bending A Modified Approach for Forecasting Relative Humidity in Indoor Premises The Impact of Chatbots on Customer Satisfaction: A Systematic Literature Review Managing Environmental Noise with Mobile Noise Barriers - a Case Study of a Dolomite Quarry in Slovakia
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1