基于决策树的微生物成分采样点预测方法

Q4 Immunology and Microbiology Journal of Bacteriology and Virology Pub Date : 2020-12-01 DOI:10.4167/JBV.2020.50.4.257
Incheol Seo
{"title":"基于决策树的微生物成分采样点预测方法","authors":"Incheol Seo","doi":"10.4167/JBV.2020.50.4.257","DOIUrl":null,"url":null,"abstract":"ƒThis is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/ license/by-nc/3.0/). The nose and throat are sites commonly used to obtain swab specimens to diagnose upper respiratory tract infections, and some studies have shown differences between the diagnostic accuracies of nose and throat swabs for upper respiratory infections. However, current sampling methods for the diagnosis of upper respiratory tract infections do not differentiate between nose and throat samples. The present study was undertaken to devise a means of determining whether samples were obtained from the nose or throat. Microbiome abundance data of 576 upper respiratory swab samples were obtained from the human microbiome project website. Predictive models were generated to determine sampling sites based on microbiomes using the random forest and regression tree with recursive partitioning methods. The final prediction model showed a near-perfect prediction for sampling sites using only the abundances of Staphylococcaceae and Streptococcaceae. The devised model can be used to predict sampling sites for upper respiratory specimens.","PeriodicalId":39739,"journal":{"name":"Journal of Bacteriology and Virology","volume":"50 1","pages":"257-262"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Predictions of Sampling Site Based on Microbial Compositions Using a Decision Tree-based Method\",\"authors\":\"Incheol Seo\",\"doi\":\"10.4167/JBV.2020.50.4.257\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ƒThis is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/ license/by-nc/3.0/). The nose and throat are sites commonly used to obtain swab specimens to diagnose upper respiratory tract infections, and some studies have shown differences between the diagnostic accuracies of nose and throat swabs for upper respiratory infections. However, current sampling methods for the diagnosis of upper respiratory tract infections do not differentiate between nose and throat samples. The present study was undertaken to devise a means of determining whether samples were obtained from the nose or throat. Microbiome abundance data of 576 upper respiratory swab samples were obtained from the human microbiome project website. Predictive models were generated to determine sampling sites based on microbiomes using the random forest and regression tree with recursive partitioning methods. The final prediction model showed a near-perfect prediction for sampling sites using only the abundances of Staphylococcaceae and Streptococcaceae. The devised model can be used to predict sampling sites for upper respiratory specimens.\",\"PeriodicalId\":39739,\"journal\":{\"name\":\"Journal of Bacteriology and Virology\",\"volume\":\"50 1\",\"pages\":\"257-262\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Bacteriology and Virology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4167/JBV.2020.50.4.257\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Immunology and Microbiology\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Bacteriology and Virology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4167/JBV.2020.50.4.257","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Immunology and Microbiology","Score":null,"Total":0}
引用次数: 0

摘要

这是一篇基于知识共享署名非商业许可协议(http://creativecommons.org/ License /by-nc/3.0/)的开放获取文章。鼻、喉是诊断上呼吸道感染常用的拭子标本采集部位,有研究表明鼻、喉拭子对上呼吸道感染的诊断准确性存在差异。然而,目前用于诊断上呼吸道感染的采样方法不能区分鼻和喉样本。本研究的目的是设计一种方法来确定样本是从鼻子还是喉咙中获得的。576份上呼吸道拭子样本的微生物组丰度数据来自人类微生物组计划网站。利用随机森林和回归树的递归划分方法,建立预测模型,确定微生物群落的采样点。最终的预测模型显示,仅使用葡萄球菌科和链球菌科的丰度,对采样点的预测接近完美。所设计的模型可用于上呼吸道标本的采样点预测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Predictions of Sampling Site Based on Microbial Compositions Using a Decision Tree-based Method
ƒThis is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/ license/by-nc/3.0/). The nose and throat are sites commonly used to obtain swab specimens to diagnose upper respiratory tract infections, and some studies have shown differences between the diagnostic accuracies of nose and throat swabs for upper respiratory infections. However, current sampling methods for the diagnosis of upper respiratory tract infections do not differentiate between nose and throat samples. The present study was undertaken to devise a means of determining whether samples were obtained from the nose or throat. Microbiome abundance data of 576 upper respiratory swab samples were obtained from the human microbiome project website. Predictive models were generated to determine sampling sites based on microbiomes using the random forest and regression tree with recursive partitioning methods. The final prediction model showed a near-perfect prediction for sampling sites using only the abundances of Staphylococcaceae and Streptococcaceae. The devised model can be used to predict sampling sites for upper respiratory specimens.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Bacteriology and Virology
Journal of Bacteriology and Virology Immunology and Microbiology-Immunology
CiteScore
0.80
自引率
0.00%
发文量
16
期刊最新文献
Plazomicin—a New Aminoglycoside—for Treating Complicated Urinary Tract Infections Trends in Norovirus Distribution among the Children of Childcare Center Intestinal Organoid as a Research Platform for the Virus-host Interaction Distribution and Transmission of Enterobacteriaceae Clinical Isolates Co-resistant to Colistin and Carbapenem in Gangwon Province, South Korea Antiviral Activity of Flavonoids Against Non-polio Enteroviruses
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1