S. McKelvey, F. Koch, William D. Smith, Kelly R. Hawley
{"title":"一个贝叶斯模型,确定了人类传播的外来病原体的风险地点","authors":"S. McKelvey, F. Koch, William D. Smith, Kelly R. Hawley","doi":"10.1111/nrm.12307","DOIUrl":null,"url":null,"abstract":"A two‐phase Bayesian model is presented for updating risk assessments for locations susceptible to infection by exotic pathogens. Human transportation from previously infected regions to uninfected regions is the main dispersal mechanism. Information embedded in patterns within the transportation flow are exploited in the update process. We explore the sensitivity of the model's outputs to changes in inputs. A sample application of the model to sudden oak death, using fictitious infection data, is performed.","PeriodicalId":49778,"journal":{"name":"Natural Resource Modeling","volume":" ","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2021-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1111/nrm.12307","citationCount":"0","resultStr":"{\"title\":\"A Bayesian model identifying locations at risk from human‐transported exotic pathogens\",\"authors\":\"S. McKelvey, F. Koch, William D. Smith, Kelly R. Hawley\",\"doi\":\"10.1111/nrm.12307\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A two‐phase Bayesian model is presented for updating risk assessments for locations susceptible to infection by exotic pathogens. Human transportation from previously infected regions to uninfected regions is the main dispersal mechanism. Information embedded in patterns within the transportation flow are exploited in the update process. We explore the sensitivity of the model's outputs to changes in inputs. A sample application of the model to sudden oak death, using fictitious infection data, is performed.\",\"PeriodicalId\":49778,\"journal\":{\"name\":\"Natural Resource Modeling\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2021-05-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1111/nrm.12307\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Natural Resource Modeling\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1111/nrm.12307\",\"RegionNum\":4,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Natural Resource Modeling","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1111/nrm.12307","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
A Bayesian model identifying locations at risk from human‐transported exotic pathogens
A two‐phase Bayesian model is presented for updating risk assessments for locations susceptible to infection by exotic pathogens. Human transportation from previously infected regions to uninfected regions is the main dispersal mechanism. Information embedded in patterns within the transportation flow are exploited in the update process. We explore the sensitivity of the model's outputs to changes in inputs. A sample application of the model to sudden oak death, using fictitious infection data, is performed.
期刊介绍:
Natural Resource Modeling is an international journal devoted to mathematical modeling of natural resource systems. It reflects the conceptual and methodological core that is common to model building throughout disciplines including such fields as forestry, fisheries, economics and ecology. This core draws upon the analytical and methodological apparatus of mathematics, statistics, and scientific computing.