{"title":"约束三元共混聚合物模型的一个有效且无条件能量稳定的完全离散格式","authors":"Guanghua Ji, Zhen Xu null, Yuqi Yang","doi":"10.4208/csiam-am.so-2021-0036","DOIUrl":null,"url":null,"abstract":". In this paper, we develop a fully discrete scheme to solve the confined ternary blended polymers (TBP) model with four order parameters based on the stabilized-scalar auxiliary variable (S-SAV) approach in time and the Fourier spectral method in space. Then, theoretical analysis is given for the scheme based on the back-ward differentiation formula. The unconditional energy stability and mass conserva-tion are derived. Rigorous error analysis is carried out to show that the fully discrete scheme converges with order O ( τ 2 + h m ) in the sense of the L 2 norm, where τ is the time step, h is the spatial step, and m is the regularity of the exact solution. Finally, some numerical results are given to demonstrate the theoretical analysis. Moreover, the phase separation of two kinds of polymer particles, namely, Ashura and Janus core-shell particles, is presented to show the morphological structures.","PeriodicalId":29749,"journal":{"name":"CSIAM Transactions on Applied Mathematics","volume":" ","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2022-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An Efficient and Unconditionally Energy Stable Fully Discrete Scheme for the Confined Ternary Blended Polymers Model\",\"authors\":\"Guanghua Ji, Zhen Xu null, Yuqi Yang\",\"doi\":\"10.4208/csiam-am.so-2021-0036\",\"DOIUrl\":null,\"url\":null,\"abstract\":\". In this paper, we develop a fully discrete scheme to solve the confined ternary blended polymers (TBP) model with four order parameters based on the stabilized-scalar auxiliary variable (S-SAV) approach in time and the Fourier spectral method in space. Then, theoretical analysis is given for the scheme based on the back-ward differentiation formula. The unconditional energy stability and mass conserva-tion are derived. Rigorous error analysis is carried out to show that the fully discrete scheme converges with order O ( τ 2 + h m ) in the sense of the L 2 norm, where τ is the time step, h is the spatial step, and m is the regularity of the exact solution. Finally, some numerical results are given to demonstrate the theoretical analysis. Moreover, the phase separation of two kinds of polymer particles, namely, Ashura and Janus core-shell particles, is presented to show the morphological structures.\",\"PeriodicalId\":29749,\"journal\":{\"name\":\"CSIAM Transactions on Applied Mathematics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2022-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"CSIAM Transactions on Applied Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4208/csiam-am.so-2021-0036\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"CSIAM Transactions on Applied Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4208/csiam-am.so-2021-0036","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
An Efficient and Unconditionally Energy Stable Fully Discrete Scheme for the Confined Ternary Blended Polymers Model
. In this paper, we develop a fully discrete scheme to solve the confined ternary blended polymers (TBP) model with four order parameters based on the stabilized-scalar auxiliary variable (S-SAV) approach in time and the Fourier spectral method in space. Then, theoretical analysis is given for the scheme based on the back-ward differentiation formula. The unconditional energy stability and mass conserva-tion are derived. Rigorous error analysis is carried out to show that the fully discrete scheme converges with order O ( τ 2 + h m ) in the sense of the L 2 norm, where τ is the time step, h is the spatial step, and m is the regularity of the exact solution. Finally, some numerical results are given to demonstrate the theoretical analysis. Moreover, the phase separation of two kinds of polymer particles, namely, Ashura and Janus core-shell particles, is presented to show the morphological structures.