B. Castillo‐Téllez, M. C. Téllez, E. C. López-Vidaña, Alfredo Domínguez Niño, G. A. Mejía-Pérez, C. Vega-Gómez
{"title":"甜叶菊叶片太阳干燥的温度-风速关联、实验与模型研究","authors":"B. Castillo‐Téllez, M. C. Téllez, E. C. López-Vidaña, Alfredo Domínguez Niño, G. A. Mejía-Pérez, C. Vega-Gómez","doi":"10.1177/01445987231176308","DOIUrl":null,"url":null,"abstract":"Sugar is a natural high-calorie sweetener. Its excessive consumption is associated with health problems such as obesity, diabetes, heart disease, and degenerative issues. The stevia plant is a great natural substitute. It provides no calories and has medicinal properties such as oral antibacterial, hypoglycemic, and anti-hypertensive with a high nutritional value. In this work, the effects of temperature and air velocity in drying kinetics of stevia leaves were studied using a convective drier operating with air velocities (2, 3, and 4 m/s) and temperatures controlled (45 °C, 55 °C, and 65 °C). The highest drying rate was obtained at 65 °C and 4 m/s air velocity at 0.05 kg water/kg dry matter min. The experimental data were fitted to theoretical drying models to determine the best approach. It is found that the Page model gives a good fit for all experiments, with correlation coefficients (R2) > 0.9994. The equations to correlate this model's variables with air and temperature were determined. The results show that ΔE and glucoside values increase when temperature and air velocity increase.","PeriodicalId":11606,"journal":{"name":"Energy Exploration & Exploitation","volume":"41 1","pages":"1802 - 1818"},"PeriodicalIF":1.9000,"publicationDate":"2023-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Temperature–air velocity association, experimental and modeling study of stevia leaves solar drying\",\"authors\":\"B. Castillo‐Téllez, M. C. Téllez, E. C. López-Vidaña, Alfredo Domínguez Niño, G. A. Mejía-Pérez, C. Vega-Gómez\",\"doi\":\"10.1177/01445987231176308\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Sugar is a natural high-calorie sweetener. Its excessive consumption is associated with health problems such as obesity, diabetes, heart disease, and degenerative issues. The stevia plant is a great natural substitute. It provides no calories and has medicinal properties such as oral antibacterial, hypoglycemic, and anti-hypertensive with a high nutritional value. In this work, the effects of temperature and air velocity in drying kinetics of stevia leaves were studied using a convective drier operating with air velocities (2, 3, and 4 m/s) and temperatures controlled (45 °C, 55 °C, and 65 °C). The highest drying rate was obtained at 65 °C and 4 m/s air velocity at 0.05 kg water/kg dry matter min. The experimental data were fitted to theoretical drying models to determine the best approach. It is found that the Page model gives a good fit for all experiments, with correlation coefficients (R2) > 0.9994. The equations to correlate this model's variables with air and temperature were determined. The results show that ΔE and glucoside values increase when temperature and air velocity increase.\",\"PeriodicalId\":11606,\"journal\":{\"name\":\"Energy Exploration & Exploitation\",\"volume\":\"41 1\",\"pages\":\"1802 - 1818\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2023-05-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Energy Exploration & Exploitation\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1177/01445987231176308\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy Exploration & Exploitation","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/01445987231176308","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
Temperature–air velocity association, experimental and modeling study of stevia leaves solar drying
Sugar is a natural high-calorie sweetener. Its excessive consumption is associated with health problems such as obesity, diabetes, heart disease, and degenerative issues. The stevia plant is a great natural substitute. It provides no calories and has medicinal properties such as oral antibacterial, hypoglycemic, and anti-hypertensive with a high nutritional value. In this work, the effects of temperature and air velocity in drying kinetics of stevia leaves were studied using a convective drier operating with air velocities (2, 3, and 4 m/s) and temperatures controlled (45 °C, 55 °C, and 65 °C). The highest drying rate was obtained at 65 °C and 4 m/s air velocity at 0.05 kg water/kg dry matter min. The experimental data were fitted to theoretical drying models to determine the best approach. It is found that the Page model gives a good fit for all experiments, with correlation coefficients (R2) > 0.9994. The equations to correlate this model's variables with air and temperature were determined. The results show that ΔE and glucoside values increase when temperature and air velocity increase.
期刊介绍:
Energy Exploration & Exploitation is a peer-reviewed, open access journal that provides up-to-date, informative reviews and original articles on important issues in the exploration, exploitation, use and economics of the world’s energy resources.