一种鉴定桡足类微塑料的新方法

J. Thery, Capucine Bialais, Maria Kazour, M. Moreau, Dylan Dufour, S. Benali, R. Amara, S. Monchy, J. Raquez, S. Souissi
{"title":"一种鉴定桡足类微塑料的新方法","authors":"J. Thery, Capucine Bialais, Maria Kazour, M. Moreau, Dylan Dufour, S. Benali, R. Amara, S. Monchy, J. Raquez, S. Souissi","doi":"10.3389/fenvc.2022.905303","DOIUrl":null,"url":null,"abstract":"This study investigates several methods to identify microplastics (MPs) of small size ranges (<10 µm) in the copepod Eurytemora affinis collected in the Seine estuary (France) and identified using epifluorescence microscopy and Raman microspectroscopy. In order to calibrate the methodology, copepods obtained from cultures were used. Firstly, we labelled three types of MPs (i.e., Polystyrene, Polyethylene, and Polylactic acid) with Nile Red and confirmed their ingestion by E. affinis with epifluorescence microscopy. Considering the convenient detection of Nile Red labelled MPs using epifluorescence observation, we tried to pair this method with Raman microspectroscopy. For this, we developed an enzymatic digestion method consisting of copepods digestion using Proteinase K followed by sonication in order to fragment their cuticle. The lysate was then vacuum filtered on black polycarbonate membrane filters that were the most appropriate for epifluorescence microscopy. Potential MPs were dyed with Nile Red directly on the filter, which allowed a relatively rapid visual detection. However, results showed that black polycarbonate membrane filters induced a significant background fluorescence during Raman identification of MPs and hence particles smaller than 10 µm could not be characterized. In this case, we were not able to link staining method with micro-Raman for the size range of MPs targeted in this study. Thus, aluminum oxide filters were tested, and staining method was replaced by a classical observation with stereomicroscopic magnifier to delimit areas of observation for Raman microscopic identification. Aluminum oxide filters induced less fluorescence, allowing the detection of MPs (as small as 1 µm diameter) on copepods from laboratory cultures exposed with MPs. We applied this method on copepods collected in the natural environment. Within a pool of 20 copepods of three replicates, we identified 17 MPs (average of 0.28 MPs/copepod) composed of eight different polymer types and six colors. These MPs corresponded to 59% of fibres with 14.1 ± 9.4 µm diameter and 391.6 ± 600.4 µm length along with 41% of fragments with an average diameter of 13.2 µm ± 9.5 µm. This study reports a novel approach to detect the presence of small particles of MPs ingested by copepods in the natural environment.","PeriodicalId":73082,"journal":{"name":"Frontiers in environmental chemistry","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A New Method for Microplastics Identification in Copepods\",\"authors\":\"J. Thery, Capucine Bialais, Maria Kazour, M. Moreau, Dylan Dufour, S. Benali, R. Amara, S. Monchy, J. Raquez, S. Souissi\",\"doi\":\"10.3389/fenvc.2022.905303\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study investigates several methods to identify microplastics (MPs) of small size ranges (<10 µm) in the copepod Eurytemora affinis collected in the Seine estuary (France) and identified using epifluorescence microscopy and Raman microspectroscopy. In order to calibrate the methodology, copepods obtained from cultures were used. Firstly, we labelled three types of MPs (i.e., Polystyrene, Polyethylene, and Polylactic acid) with Nile Red and confirmed their ingestion by E. affinis with epifluorescence microscopy. Considering the convenient detection of Nile Red labelled MPs using epifluorescence observation, we tried to pair this method with Raman microspectroscopy. For this, we developed an enzymatic digestion method consisting of copepods digestion using Proteinase K followed by sonication in order to fragment their cuticle. The lysate was then vacuum filtered on black polycarbonate membrane filters that were the most appropriate for epifluorescence microscopy. Potential MPs were dyed with Nile Red directly on the filter, which allowed a relatively rapid visual detection. However, results showed that black polycarbonate membrane filters induced a significant background fluorescence during Raman identification of MPs and hence particles smaller than 10 µm could not be characterized. In this case, we were not able to link staining method with micro-Raman for the size range of MPs targeted in this study. Thus, aluminum oxide filters were tested, and staining method was replaced by a classical observation with stereomicroscopic magnifier to delimit areas of observation for Raman microscopic identification. Aluminum oxide filters induced less fluorescence, allowing the detection of MPs (as small as 1 µm diameter) on copepods from laboratory cultures exposed with MPs. We applied this method on copepods collected in the natural environment. Within a pool of 20 copepods of three replicates, we identified 17 MPs (average of 0.28 MPs/copepod) composed of eight different polymer types and six colors. These MPs corresponded to 59% of fibres with 14.1 ± 9.4 µm diameter and 391.6 ± 600.4 µm length along with 41% of fragments with an average diameter of 13.2 µm ± 9.5 µm. This study reports a novel approach to detect the presence of small particles of MPs ingested by copepods in the natural environment.\",\"PeriodicalId\":73082,\"journal\":{\"name\":\"Frontiers in environmental chemistry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-05-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in environmental chemistry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3389/fenvc.2022.905303\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in environmental chemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/fenvc.2022.905303","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本研究调查了几种方法,以识别在塞纳河口(法国)采集的桡足类亲鱼Eurytemora中小尺寸范围(<10µm)的微塑料(MP),并使用落射荧光显微镜和拉曼显微光谱法进行识别。为了校准方法,使用了从培养物中获得的桡足类。首先,我们用尼罗红标记了三种类型的MPs(即聚苯乙烯、聚乙烯和聚乳酸),并用落射荧光显微镜证实了它们被嗜酸乳杆菌摄入。考虑到使用落射荧光观察方便地检测尼罗红标记的MPs,我们尝试将该方法与拉曼显微光谱法配对。为此,我们开发了一种酶促消化方法,包括使用蛋白酶K消化桡足类,然后进行超声处理,以破碎其角质层。然后在最适合于落射荧光显微镜的黑色聚碳酸酯膜过滤器上对裂解物进行真空过滤。潜在的MP直接在过滤器上用尼罗红染色,这允许相对快速的视觉检测。然而,结果显示,黑色聚碳酸酯膜过滤器在MPs的拉曼识别过程中引发了显著的背景荧光,因此无法表征小于10µm的颗粒。在这种情况下,对于本研究中靶向的MP的大小范围,我们无法将染色方法与显微拉曼联系起来。因此,对氧化铝过滤器进行了测试,并用立体显微镜放大镜的经典观察代替染色方法,以划定拉曼显微镜鉴定的观察区域。氧化铝过滤器诱导的荧光更少,可以从暴露于MPs的实验室培养物中检测桡足类上的MPs(直径小至1µm)。我们在自然环境中采集的桡足类动物身上应用了这种方法。在三个重复的20个桡足类中,我们鉴定了17个MP(平均0.28个MPs/桡足类),由八种不同的聚合物类型和六种颜色组成。这些MPs对应于59%的直径为14.1±9.4µm、长度为391.6±600.4µm的纤维,以及41%的平均直径为13.2µm±9.5µm的碎片。这项研究报告了一种新的方法来检测桡足类在自然环境中摄入的小颗粒MPs的存在。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A New Method for Microplastics Identification in Copepods
This study investigates several methods to identify microplastics (MPs) of small size ranges (<10 µm) in the copepod Eurytemora affinis collected in the Seine estuary (France) and identified using epifluorescence microscopy and Raman microspectroscopy. In order to calibrate the methodology, copepods obtained from cultures were used. Firstly, we labelled three types of MPs (i.e., Polystyrene, Polyethylene, and Polylactic acid) with Nile Red and confirmed their ingestion by E. affinis with epifluorescence microscopy. Considering the convenient detection of Nile Red labelled MPs using epifluorescence observation, we tried to pair this method with Raman microspectroscopy. For this, we developed an enzymatic digestion method consisting of copepods digestion using Proteinase K followed by sonication in order to fragment their cuticle. The lysate was then vacuum filtered on black polycarbonate membrane filters that were the most appropriate for epifluorescence microscopy. Potential MPs were dyed with Nile Red directly on the filter, which allowed a relatively rapid visual detection. However, results showed that black polycarbonate membrane filters induced a significant background fluorescence during Raman identification of MPs and hence particles smaller than 10 µm could not be characterized. In this case, we were not able to link staining method with micro-Raman for the size range of MPs targeted in this study. Thus, aluminum oxide filters were tested, and staining method was replaced by a classical observation with stereomicroscopic magnifier to delimit areas of observation for Raman microscopic identification. Aluminum oxide filters induced less fluorescence, allowing the detection of MPs (as small as 1 µm diameter) on copepods from laboratory cultures exposed with MPs. We applied this method on copepods collected in the natural environment. Within a pool of 20 copepods of three replicates, we identified 17 MPs (average of 0.28 MPs/copepod) composed of eight different polymer types and six colors. These MPs corresponded to 59% of fibres with 14.1 ± 9.4 µm diameter and 391.6 ± 600.4 µm length along with 41% of fragments with an average diameter of 13.2 µm ± 9.5 µm. This study reports a novel approach to detect the presence of small particles of MPs ingested by copepods in the natural environment.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
审稿时长
13 weeks
期刊最新文献
Occurrence of 80 per and polyfluorinated alkyl substances (PFAS) in muscle and liver tissues of marine mammals of the St. Lawrence Estuary and Gulf, Quebec, Canada Method optimization for benchtop mass spectrometry imaging of lipids in Eisenia hortensis A review of per- and polyfluoroalkyl substances in biosolids: geographical distribution and regulations Air non-thermal plasma, a green approach for the treatment of contaminated water: the case of sulfamethoxazole Performance of pitcher-type POU filters for the removal of 75 PFAS from drinking water: comparing different water sources
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1