{"title":"建立一系列替代地球未来的弹性","authors":"S. Rahimifard","doi":"10.1080/19397038.2021.2009208","DOIUrl":null,"url":null,"abstract":"The devastating impacts of increasingly frequent and wideranging climatic events from tornadoes to hurricanes, wild floods to extreme droughts, freezing cold to extreme heat periods, melting ice and sea level rises to wildfires and deforestation have rapidly evolved the global mindset from climate change to climate crisis, and public demands for climate emergency declarations. The unprecedented level of global ‘eco-enthusiasm’, in particular among younger generations whose quality of life is most likely to be deeply affected, appear to have finally gained the desired traction among key decision makers and stakeholders. The COP26 conference in Glasgow was the largest gathering of governments, industrial leaders and community representatives who appeared to compete in shining the light on their sustainability aspirations and firm commitments to reduce negative impacts on the environment. There was a clear and unstoppable excitement prior to this gathering, seeing this as a critical moment in history with potential to make notable changes towards a sustainable future. Undoubtedly, the long-term successes or failures of COP26 will be scrutinised and assessed in the coming weeks and months, however, a common observation among activists is that the agreements on improvement and reduction targets are not ambitious enough to address the urgent needs and investment commitments are not proportional to size of the challenges ahead. For example, the United Nations Emissions Gap Report (2021) stated that the planet was on course for a dangerous 2.7°C of global warming just before COP26. Based on new announcements made during the Conference, it is estimated that we are now on a path to between 1.8°C and 2.4°C of warming, with further agreement among signatories to revisit their commitments by the end of 2022 to ‘keep the 1.5°C ambition under the Paris Agreement alive’ (COP26 2011). The paramount importance of the role of engineering research and innovation to achieve short-term targets (now until 2030) to build a sustainable future, encapsulated by the United Nations Sustainable Development Goals (UN-SDGS 2015), is now very well defined and understood. But, perhaps the most significant lesson from COP26 is the recognition and final acceptance of paralysing complexities in generating global, coherent and transitional strategies and plans to avoid irreversible changes in our eco-system. This highlights the importance of long-term targets (2030–2050) to become resilient towards a set of alternative ‘earth futures’ that are emerging due to the common reality of the current climate crisis. In this context the key research questions, therefore, are ‘how do we identify and define these alternative earth futures?’ and ‘what are the long-term engineering challenges in building resilience towards these futures?’. Among the many roadmaps and scenarios that have been published, one approach is the utilisation of a two axes scenario planning methodology. This has been used for many years to improve the quality of strategic planning in various applications, and in particular to identify the critical factors that will shape our eco-system futures. Readers are referred to Rahimifard et al. (2013) for further details. The proposed critical factors in this study are firstly the severity of our negative impacts on the environment that were extensively discussed at COP26 and secondly the rapid depletion of resources which perhaps has not been deliberated to the same extent but would undeniably have immeasurable economic and socio-political consequences in the way that the global population will maintain lifestyles. Using these factors, Figure 1 depicts four possible scenarios (or futures) for the eco-system in our planet, labelled as follows:","PeriodicalId":14400,"journal":{"name":"International Journal of Sustainable Engineering","volume":"14 1","pages":"1287 - 1289"},"PeriodicalIF":3.6000,"publicationDate":"2021-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Building resilience towards a range of alternative earth futures\",\"authors\":\"S. Rahimifard\",\"doi\":\"10.1080/19397038.2021.2009208\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The devastating impacts of increasingly frequent and wideranging climatic events from tornadoes to hurricanes, wild floods to extreme droughts, freezing cold to extreme heat periods, melting ice and sea level rises to wildfires and deforestation have rapidly evolved the global mindset from climate change to climate crisis, and public demands for climate emergency declarations. The unprecedented level of global ‘eco-enthusiasm’, in particular among younger generations whose quality of life is most likely to be deeply affected, appear to have finally gained the desired traction among key decision makers and stakeholders. The COP26 conference in Glasgow was the largest gathering of governments, industrial leaders and community representatives who appeared to compete in shining the light on their sustainability aspirations and firm commitments to reduce negative impacts on the environment. There was a clear and unstoppable excitement prior to this gathering, seeing this as a critical moment in history with potential to make notable changes towards a sustainable future. Undoubtedly, the long-term successes or failures of COP26 will be scrutinised and assessed in the coming weeks and months, however, a common observation among activists is that the agreements on improvement and reduction targets are not ambitious enough to address the urgent needs and investment commitments are not proportional to size of the challenges ahead. For example, the United Nations Emissions Gap Report (2021) stated that the planet was on course for a dangerous 2.7°C of global warming just before COP26. Based on new announcements made during the Conference, it is estimated that we are now on a path to between 1.8°C and 2.4°C of warming, with further agreement among signatories to revisit their commitments by the end of 2022 to ‘keep the 1.5°C ambition under the Paris Agreement alive’ (COP26 2011). The paramount importance of the role of engineering research and innovation to achieve short-term targets (now until 2030) to build a sustainable future, encapsulated by the United Nations Sustainable Development Goals (UN-SDGS 2015), is now very well defined and understood. But, perhaps the most significant lesson from COP26 is the recognition and final acceptance of paralysing complexities in generating global, coherent and transitional strategies and plans to avoid irreversible changes in our eco-system. This highlights the importance of long-term targets (2030–2050) to become resilient towards a set of alternative ‘earth futures’ that are emerging due to the common reality of the current climate crisis. In this context the key research questions, therefore, are ‘how do we identify and define these alternative earth futures?’ and ‘what are the long-term engineering challenges in building resilience towards these futures?’. Among the many roadmaps and scenarios that have been published, one approach is the utilisation of a two axes scenario planning methodology. This has been used for many years to improve the quality of strategic planning in various applications, and in particular to identify the critical factors that will shape our eco-system futures. Readers are referred to Rahimifard et al. (2013) for further details. The proposed critical factors in this study are firstly the severity of our negative impacts on the environment that were extensively discussed at COP26 and secondly the rapid depletion of resources which perhaps has not been deliberated to the same extent but would undeniably have immeasurable economic and socio-political consequences in the way that the global population will maintain lifestyles. Using these factors, Figure 1 depicts four possible scenarios (or futures) for the eco-system in our planet, labelled as follows:\",\"PeriodicalId\":14400,\"journal\":{\"name\":\"International Journal of Sustainable Engineering\",\"volume\":\"14 1\",\"pages\":\"1287 - 1289\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2021-11-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Sustainable Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/19397038.2021.2009208\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Sustainable Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/19397038.2021.2009208","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY","Score":null,"Total":0}
Building resilience towards a range of alternative earth futures
The devastating impacts of increasingly frequent and wideranging climatic events from tornadoes to hurricanes, wild floods to extreme droughts, freezing cold to extreme heat periods, melting ice and sea level rises to wildfires and deforestation have rapidly evolved the global mindset from climate change to climate crisis, and public demands for climate emergency declarations. The unprecedented level of global ‘eco-enthusiasm’, in particular among younger generations whose quality of life is most likely to be deeply affected, appear to have finally gained the desired traction among key decision makers and stakeholders. The COP26 conference in Glasgow was the largest gathering of governments, industrial leaders and community representatives who appeared to compete in shining the light on their sustainability aspirations and firm commitments to reduce negative impacts on the environment. There was a clear and unstoppable excitement prior to this gathering, seeing this as a critical moment in history with potential to make notable changes towards a sustainable future. Undoubtedly, the long-term successes or failures of COP26 will be scrutinised and assessed in the coming weeks and months, however, a common observation among activists is that the agreements on improvement and reduction targets are not ambitious enough to address the urgent needs and investment commitments are not proportional to size of the challenges ahead. For example, the United Nations Emissions Gap Report (2021) stated that the planet was on course for a dangerous 2.7°C of global warming just before COP26. Based on new announcements made during the Conference, it is estimated that we are now on a path to between 1.8°C and 2.4°C of warming, with further agreement among signatories to revisit their commitments by the end of 2022 to ‘keep the 1.5°C ambition under the Paris Agreement alive’ (COP26 2011). The paramount importance of the role of engineering research and innovation to achieve short-term targets (now until 2030) to build a sustainable future, encapsulated by the United Nations Sustainable Development Goals (UN-SDGS 2015), is now very well defined and understood. But, perhaps the most significant lesson from COP26 is the recognition and final acceptance of paralysing complexities in generating global, coherent and transitional strategies and plans to avoid irreversible changes in our eco-system. This highlights the importance of long-term targets (2030–2050) to become resilient towards a set of alternative ‘earth futures’ that are emerging due to the common reality of the current climate crisis. In this context the key research questions, therefore, are ‘how do we identify and define these alternative earth futures?’ and ‘what are the long-term engineering challenges in building resilience towards these futures?’. Among the many roadmaps and scenarios that have been published, one approach is the utilisation of a two axes scenario planning methodology. This has been used for many years to improve the quality of strategic planning in various applications, and in particular to identify the critical factors that will shape our eco-system futures. Readers are referred to Rahimifard et al. (2013) for further details. The proposed critical factors in this study are firstly the severity of our negative impacts on the environment that were extensively discussed at COP26 and secondly the rapid depletion of resources which perhaps has not been deliberated to the same extent but would undeniably have immeasurable economic and socio-political consequences in the way that the global population will maintain lifestyles. Using these factors, Figure 1 depicts four possible scenarios (or futures) for the eco-system in our planet, labelled as follows: