柔性动态多孔配位材料的设计与应用

Nobuhiko Hosono
{"title":"柔性动态多孔配位材料的设计与应用","authors":"Nobuhiko Hosono","doi":"10.4019/bjscc.75.42","DOIUrl":null,"url":null,"abstract":"Porous materials, including porous carbons, zeolites, and porous coordination polymers (PCPs), are generally recognized as rigid, hard, and fragile substances. However, focusing on their structure and surface at the molecular level, there are various dynamic phenomena and processes such as deformation and reconstruction of the crystal structure as well as molecular motion such as vibration and rotation occurring in the materials. In this account, recent developments of functional PCPs based on a new design approach making use of such dynamic nature of molecular entities are described. A dynamic molecular functionality incorporated into the PCP nanochannel affords precise control of gas diffusion process in the PCP, thus enabling outstanding gas separation and storage capability. In order to visualize the dynamic behavior of PCP, atomic force microscopy was used to observe native surfaces of a PCP crystal, which enabled real-time imaging of the dynamic response of the PCP with a molecular-level resolution. In addition, an interdisciplinary approach that combines porous material chemistry and soft material chemistry, which gives novel porous soft materials with solution/thermal processable feature, is described. This bottom-up design concept that connects dynamic molecular properties to the material functions offers a promising way to the next-generation porous materials.","PeriodicalId":72479,"journal":{"name":"Bulletin of Japan Society of Coordination Chemistry","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Design and Application of Porous Coordination Materials with Soft and Dynamic Nature\",\"authors\":\"Nobuhiko Hosono\",\"doi\":\"10.4019/bjscc.75.42\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Porous materials, including porous carbons, zeolites, and porous coordination polymers (PCPs), are generally recognized as rigid, hard, and fragile substances. However, focusing on their structure and surface at the molecular level, there are various dynamic phenomena and processes such as deformation and reconstruction of the crystal structure as well as molecular motion such as vibration and rotation occurring in the materials. In this account, recent developments of functional PCPs based on a new design approach making use of such dynamic nature of molecular entities are described. A dynamic molecular functionality incorporated into the PCP nanochannel affords precise control of gas diffusion process in the PCP, thus enabling outstanding gas separation and storage capability. In order to visualize the dynamic behavior of PCP, atomic force microscopy was used to observe native surfaces of a PCP crystal, which enabled real-time imaging of the dynamic response of the PCP with a molecular-level resolution. In addition, an interdisciplinary approach that combines porous material chemistry and soft material chemistry, which gives novel porous soft materials with solution/thermal processable feature, is described. This bottom-up design concept that connects dynamic molecular properties to the material functions offers a promising way to the next-generation porous materials.\",\"PeriodicalId\":72479,\"journal\":{\"name\":\"Bulletin of Japan Society of Coordination Chemistry\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-05-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of Japan Society of Coordination Chemistry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4019/bjscc.75.42\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of Japan Society of Coordination Chemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4019/bjscc.75.42","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

多孔材料,包括多孔碳、沸石和多孔配位聚合物(pcp),通常被认为是刚性、坚硬和易碎的物质。然而,在分子水平上聚焦于它们的结构和表面,材料中发生着各种动态现象和过程,如晶体结构的变形和重建以及分子运动,如振动和旋转。在这个帐户中,功能性pcp的最新发展基于一种新的设计方法,利用分子实体的这种动态性质进行了描述。将动态分子功能整合到PCP纳米通道中,可以精确控制PCP中的气体扩散过程,从而实现出色的气体分离和储存能力。为了可视化PCP的动态行为,使用原子力显微镜观察了PCP晶体的天然表面,从而实现了分子水平分辨率的PCP动态响应的实时成像。此外,描述了一种将多孔材料化学与软材料化学相结合的跨学科方法,该方法给出了具有溶液/热可加工特征的新型多孔软材料。这种自下而上的设计概念将动态分子特性与材料功能联系起来,为下一代多孔材料提供了一条有前途的道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Design and Application of Porous Coordination Materials with Soft and Dynamic Nature
Porous materials, including porous carbons, zeolites, and porous coordination polymers (PCPs), are generally recognized as rigid, hard, and fragile substances. However, focusing on their structure and surface at the molecular level, there are various dynamic phenomena and processes such as deformation and reconstruction of the crystal structure as well as molecular motion such as vibration and rotation occurring in the materials. In this account, recent developments of functional PCPs based on a new design approach making use of such dynamic nature of molecular entities are described. A dynamic molecular functionality incorporated into the PCP nanochannel affords precise control of gas diffusion process in the PCP, thus enabling outstanding gas separation and storage capability. In order to visualize the dynamic behavior of PCP, atomic force microscopy was used to observe native surfaces of a PCP crystal, which enabled real-time imaging of the dynamic response of the PCP with a molecular-level resolution. In addition, an interdisciplinary approach that combines porous material chemistry and soft material chemistry, which gives novel porous soft materials with solution/thermal processable feature, is described. This bottom-up design concept that connects dynamic molecular properties to the material functions offers a promising way to the next-generation porous materials.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Synthetic Copper-(Di)oxygen Complex Generation and Reactivity Relevant to Copper Protein O2-Processing. Terminal Cobalt Imido Complexes Bearing N-Anchored Tripodal N-Heterocyclic Carbene Ligands:From Imides to Imidyls and Nitrenes ナトリウムイオン電池とプルシアンブルー類似体 The Structure and Reactivity of Metal-Oxygen/Water Complexes Quantum coherent manipulation of magnetic molecules
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1