用锐界面浸没边界方法研究低雷诺数下静止和振荡翼型的流动

P. Seshadri, A. De
{"title":"用锐界面浸没边界方法研究低雷诺数下静止和振荡翼型的流动","authors":"P. Seshadri, A. De","doi":"10.1615/JFlowVisImageProc.2020030995","DOIUrl":null,"url":null,"abstract":"The present study reports on flow past airfoils (stationary and moving) using sharp interface immersed-boundary approach. Non-boundary conforming approach like immersed-boundary method offers a viable alternative over traditional boundary conforming approach by allowing us to model flow past arbitrarily complex shapes, by eliminating the need to re-grid the flow domain as the body exhibits motion. We present flow past a NACA 0012 airfoil at stationary conditions as well as exhibiting pitching motion. Evolution of vortex dynamics and wake structures are presented to show that the developed sharp interface immersed-boundary approach captures the flow physics of dynamic stall accurately. Moving body problems involving immersed-boundary approach usually encounter the issues of spurious oscillations and mass conservation. This is handled through a field extension strategy based on ghost cell approach, which allows for extrapolating the flow field value onto the ghost nodes, ensuring smooth temporal transition as the immersed surface moves through time. The results presented here show excellent agreement with the experimental results found in the literature.","PeriodicalId":41984,"journal":{"name":"JOURNAL OF FLOW VISUALIZATION AND IMAGE PROCESSING","volume":"27 1","pages":"47-69"},"PeriodicalIF":0.8000,"publicationDate":"2021-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"FLOW PAST STATIONARY AND OSCILLATING AIRFOIL AT A LOW REYNOLDS NUMBER USING SHARP INTERFACE IMMERSED-BOUNDARY APPROACH\",\"authors\":\"P. Seshadri, A. De\",\"doi\":\"10.1615/JFlowVisImageProc.2020030995\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The present study reports on flow past airfoils (stationary and moving) using sharp interface immersed-boundary approach. Non-boundary conforming approach like immersed-boundary method offers a viable alternative over traditional boundary conforming approach by allowing us to model flow past arbitrarily complex shapes, by eliminating the need to re-grid the flow domain as the body exhibits motion. We present flow past a NACA 0012 airfoil at stationary conditions as well as exhibiting pitching motion. Evolution of vortex dynamics and wake structures are presented to show that the developed sharp interface immersed-boundary approach captures the flow physics of dynamic stall accurately. Moving body problems involving immersed-boundary approach usually encounter the issues of spurious oscillations and mass conservation. This is handled through a field extension strategy based on ghost cell approach, which allows for extrapolating the flow field value onto the ghost nodes, ensuring smooth temporal transition as the immersed surface moves through time. The results presented here show excellent agreement with the experimental results found in the literature.\",\"PeriodicalId\":41984,\"journal\":{\"name\":\"JOURNAL OF FLOW VISUALIZATION AND IMAGE PROCESSING\",\"volume\":\"27 1\",\"pages\":\"47-69\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2021-02-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"JOURNAL OF FLOW VISUALIZATION AND IMAGE PROCESSING\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1615/JFlowVisImageProc.2020030995\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"JOURNAL OF FLOW VISUALIZATION AND IMAGE PROCESSING","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1615/JFlowVisImageProc.2020030995","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 3

摘要

本研究报告的流动通过翼型(静止和运动)使用尖锐界面浸入边界方法。非边界一致性方法,如浸入边界方法,提供了一种可行的替代传统的边界一致性方法,允许我们模拟任意复杂形状的流动,通过消除需要重新网格化的流动领域,因为身体表现出运动。我们现在流过一个NACA 0012翼型在静止条件下,以及展示俯仰运动。涡动力学和尾迹结构的演变表明,所提出的尖锐界面浸入边界方法能够准确地捕捉动态失速的流动物理特性。涉及浸入边界方法的动体问题通常会遇到伪振荡和质量守恒问题。这是通过基于鬼影单元方法的场扩展策略来处理的,该策略允许将流场值外推到鬼影节点上,确保浸入表面随时间移动时的平滑时间过渡。本文给出的结果与文献中的实验结果非常吻合。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
FLOW PAST STATIONARY AND OSCILLATING AIRFOIL AT A LOW REYNOLDS NUMBER USING SHARP INTERFACE IMMERSED-BOUNDARY APPROACH
The present study reports on flow past airfoils (stationary and moving) using sharp interface immersed-boundary approach. Non-boundary conforming approach like immersed-boundary method offers a viable alternative over traditional boundary conforming approach by allowing us to model flow past arbitrarily complex shapes, by eliminating the need to re-grid the flow domain as the body exhibits motion. We present flow past a NACA 0012 airfoil at stationary conditions as well as exhibiting pitching motion. Evolution of vortex dynamics and wake structures are presented to show that the developed sharp interface immersed-boundary approach captures the flow physics of dynamic stall accurately. Moving body problems involving immersed-boundary approach usually encounter the issues of spurious oscillations and mass conservation. This is handled through a field extension strategy based on ghost cell approach, which allows for extrapolating the flow field value onto the ghost nodes, ensuring smooth temporal transition as the immersed surface moves through time. The results presented here show excellent agreement with the experimental results found in the literature.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.30
自引率
16.70%
发文量
27
期刊介绍: The Journal of Flow Visualization and Image Processing is a quarterly refereed research journal that publishes original papers to disseminate and exchange knowledge and information on the principles and applications of flow visualization techniques and related image processing algorithms.  Flow visualization and quantification have emerged as powerful tools in velocity, pressure, temperature and species concentration measurements, combustion diagnostics, and process monitoring related to physical, biomedical, and engineering sciences. Measurements were initially based on lasers but have expanded to include a wider electromagnetic spectrum. Numerical simulation is a second source of data amenable to image analysis. Direct visualization in the form of high speed, high resolution imaging supplements optical measurements. A combination of flow visualization and image processing holds promise to breach the holy grail of extracting instantaneous three dimensional data in transport phenomena.  Optical methods can be enlarged to cover a wide range of measurements, first by factoring in the applicable physical laws and next, by including the principle of image formation itself. These steps help in utilizing incomplete data and imperfect visualization for reconstructing a complete scenario of the transport process.[...]  The journal will promote academic and industrial advancement and improvement of flow imaging techniques internationally. It seeks to convey practical information in this field covering all areas in science, technology, and medicine for engineers, scientists, and researchers in industry, academia, and government.
期刊最新文献
MODIFICATION OF A MULTI-HOLE INJECTOR TO A SINGLE-HOLE INJECTOR AND SPRAY CHARACTERISTICS OF THE MODIFIED INJECTOR BY TWO DIFFERENT IMAGING TECHNIQUES Robust Face Recognition Algorithm Based on Multidirectional Log-Gabor Features Facial Emotion Recognition Based on Selective Kernel Network Grape Leaf Disease Recognition Based on Multi-scale Mixed Attention Residual Network VISUALIZATION OF TURBULENT EVENTS VIA VIRTUAL/AUGMENTED REALITY
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1