{"title":"亨廷顿舞蹈症最新进展:重复不稳定性在疾病发病机制中作用的新见解","authors":"Larissa Arning, Huu Phuc Nguyen","doi":"10.1515/medgen-2021-2101","DOIUrl":null,"url":null,"abstract":"<p><p>The causative mutation for Huntington disease (HD), an expanded trinucleotide repeat sequence in the first exon of the huntingtin gene (<i>HTT</i>) is naturally polymorphic and inevitably associated with disease symptoms above 39 CAG repeats. Although symptomatic medical therapies for HD can improve the motor and non-motor symptoms for affected patients, these drugs do not stop the ongoing neurodegeneration and progression of the disease, which results in severe motor and cognitive disability and death. To date, there is still an urgent need for the development of effective disease-modifying therapies to slow or even stop the progression of HD. The increasing ability to intervene directly at the roots of the disease, namely <i>HTT</i> transcription and translation of its mRNA, makes it necessary to understand the pathogenesis of HD as precisely as possible. In addition to the long-postulated toxicity of the polyglutamine-expanded mutant HTT protein, there is increasing evidence that the CAG repeat-containing RNA might also be directly involved in toxicity. Recent studies have identified <i>cis</i>- (DNA repair genes) and <i>trans</i>- (loss/duplication of CAA interruption) acting variants as major modifiers of age at onset (AO) and disease progression. More and more extensive data indicate that somatic instability functions as a driver for AO as well as disease progression and severity, not only in HD but also in other polyglutamine diseases. Thus, somatic expansions of repetitive DNA sequences may be essential to promote respective repeat lengths to reach a threshold leading to the overt neurodegenerative symptoms of trinucleotide diseases. These findings support somatic expansion as a potential therapeutic target in HD and related repeat expansion disorders.</p>","PeriodicalId":48632,"journal":{"name":"Medizinische Genetik","volume":"33 1","pages":"293-300"},"PeriodicalIF":0.8000,"publicationDate":"2022-01-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11006308/pdf/","citationCount":"0","resultStr":"{\"title\":\"Huntington disease update: new insights into the role of repeat instability in disease pathogenesis.\",\"authors\":\"Larissa Arning, Huu Phuc Nguyen\",\"doi\":\"10.1515/medgen-2021-2101\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The causative mutation for Huntington disease (HD), an expanded trinucleotide repeat sequence in the first exon of the huntingtin gene (<i>HTT</i>) is naturally polymorphic and inevitably associated with disease symptoms above 39 CAG repeats. Although symptomatic medical therapies for HD can improve the motor and non-motor symptoms for affected patients, these drugs do not stop the ongoing neurodegeneration and progression of the disease, which results in severe motor and cognitive disability and death. To date, there is still an urgent need for the development of effective disease-modifying therapies to slow or even stop the progression of HD. The increasing ability to intervene directly at the roots of the disease, namely <i>HTT</i> transcription and translation of its mRNA, makes it necessary to understand the pathogenesis of HD as precisely as possible. In addition to the long-postulated toxicity of the polyglutamine-expanded mutant HTT protein, there is increasing evidence that the CAG repeat-containing RNA might also be directly involved in toxicity. Recent studies have identified <i>cis</i>- (DNA repair genes) and <i>trans</i>- (loss/duplication of CAA interruption) acting variants as major modifiers of age at onset (AO) and disease progression. More and more extensive data indicate that somatic instability functions as a driver for AO as well as disease progression and severity, not only in HD but also in other polyglutamine diseases. Thus, somatic expansions of repetitive DNA sequences may be essential to promote respective repeat lengths to reach a threshold leading to the overt neurodegenerative symptoms of trinucleotide diseases. These findings support somatic expansion as a potential therapeutic target in HD and related repeat expansion disorders.</p>\",\"PeriodicalId\":48632,\"journal\":{\"name\":\"Medizinische Genetik\",\"volume\":\"33 1\",\"pages\":\"293-300\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2022-01-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11006308/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Medizinische Genetik\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1515/medgen-2021-2101\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2021/12/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q4\",\"JCRName\":\"GENETICS & HEREDITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medizinische Genetik","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1515/medgen-2021-2101","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/12/1 0:00:00","PubModel":"eCollection","JCR":"Q4","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
Huntington disease update: new insights into the role of repeat instability in disease pathogenesis.
The causative mutation for Huntington disease (HD), an expanded trinucleotide repeat sequence in the first exon of the huntingtin gene (HTT) is naturally polymorphic and inevitably associated with disease symptoms above 39 CAG repeats. Although symptomatic medical therapies for HD can improve the motor and non-motor symptoms for affected patients, these drugs do not stop the ongoing neurodegeneration and progression of the disease, which results in severe motor and cognitive disability and death. To date, there is still an urgent need for the development of effective disease-modifying therapies to slow or even stop the progression of HD. The increasing ability to intervene directly at the roots of the disease, namely HTT transcription and translation of its mRNA, makes it necessary to understand the pathogenesis of HD as precisely as possible. In addition to the long-postulated toxicity of the polyglutamine-expanded mutant HTT protein, there is increasing evidence that the CAG repeat-containing RNA might also be directly involved in toxicity. Recent studies have identified cis- (DNA repair genes) and trans- (loss/duplication of CAA interruption) acting variants as major modifiers of age at onset (AO) and disease progression. More and more extensive data indicate that somatic instability functions as a driver for AO as well as disease progression and severity, not only in HD but also in other polyglutamine diseases. Thus, somatic expansions of repetitive DNA sequences may be essential to promote respective repeat lengths to reach a threshold leading to the overt neurodegenerative symptoms of trinucleotide diseases. These findings support somatic expansion as a potential therapeutic target in HD and related repeat expansion disorders.
期刊介绍:
medizinischegenetik is a scientific journal that is owned and published by the German Society of Human Genetics e.V. since 1989. The journal was founded by Prof. Jan Murken, München. Self-published until 2006, from 2007-2019 published at Springer Verlag and since 2020 at De Gruyter.
medizinischegenetik serves education and training among colleagues, the interdisciplinary exchange of knowledge in all areas of human genetics in clinics, practice, research and teaching. Each issue of the quarterly journal deals with a focus that provides a comprehensive overview of current developments in specific clinical pictures, technical developments and therapeutic approaches. All reviews are written in English language. The journal thus creates a platform for the international exchange of knowledge and increased awareness of German research activities in the scientific community.
In addition, medizinischegenetik contains information on activities in its own subject in the German-language section. This includes conference reports, association announcements, personnel matters, statements and guidelines. With health policy questions, historical retrospectives and comments on current developments, the profession takes a stand on human genetic issues in Germany, Austria and Switzerland.