{"title":"基于深度预训练语言表示模型的无监督法律文章挖掘及其在意大利民法典中的应用","authors":"Andrea Tagarelli, Andrea Simeri","doi":"10.1007/s10506-021-09301-8","DOIUrl":null,"url":null,"abstract":"<div><p>Modeling law search and retrieval as prediction problems has recently emerged as a predominant approach in law intelligence. Focusing on the law article retrieval task, we present a deep learning framework named LamBERTa, which is designed for civil-law codes, and specifically trained on the Italian civil code. To our knowledge, this is the first study proposing an advanced approach to law article prediction for the Italian legal system based on a BERT (Bidirectional Encoder Representations from Transformers) learning framework, which has recently attracted increased attention among deep learning approaches, showing outstanding effectiveness in several natural language processing and learning tasks. We define LamBERTa models by fine-tuning an Italian pre-trained BERT on the Italian civil code or its portions, for law article retrieval as a classification task. One key aspect of our LamBERTa framework is that we conceived it to address an extreme classification scenario, which is characterized by a high number of classes, the few-shot learning problem, and the lack of test query benchmarks for Italian legal prediction tasks. To solve such issues, we define different methods for the unsupervised labeling of the law articles, which can in principle be applied to any law article code system. We provide insights into the explainability and interpretability of our LamBERTa models, and we present an extensive experimental analysis over query sets of different type, for single-label as well as multi-label evaluation tasks. Empirical evidence has shown the effectiveness of LamBERTa, and also its superiority against widely used deep-learning text classifiers and a few-shot learner conceived for an attribute-aware prediction task.</p></div>","PeriodicalId":51336,"journal":{"name":"Artificial Intelligence and Law","volume":"30 3","pages":"417 - 473"},"PeriodicalIF":3.1000,"publicationDate":"2021-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10506-021-09301-8.pdf","citationCount":"26","resultStr":"{\"title\":\"Unsupervised law article mining based on deep pre-trained language representation models with application to the Italian civil code\",\"authors\":\"Andrea Tagarelli, Andrea Simeri\",\"doi\":\"10.1007/s10506-021-09301-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Modeling law search and retrieval as prediction problems has recently emerged as a predominant approach in law intelligence. Focusing on the law article retrieval task, we present a deep learning framework named LamBERTa, which is designed for civil-law codes, and specifically trained on the Italian civil code. To our knowledge, this is the first study proposing an advanced approach to law article prediction for the Italian legal system based on a BERT (Bidirectional Encoder Representations from Transformers) learning framework, which has recently attracted increased attention among deep learning approaches, showing outstanding effectiveness in several natural language processing and learning tasks. We define LamBERTa models by fine-tuning an Italian pre-trained BERT on the Italian civil code or its portions, for law article retrieval as a classification task. One key aspect of our LamBERTa framework is that we conceived it to address an extreme classification scenario, which is characterized by a high number of classes, the few-shot learning problem, and the lack of test query benchmarks for Italian legal prediction tasks. To solve such issues, we define different methods for the unsupervised labeling of the law articles, which can in principle be applied to any law article code system. We provide insights into the explainability and interpretability of our LamBERTa models, and we present an extensive experimental analysis over query sets of different type, for single-label as well as multi-label evaluation tasks. Empirical evidence has shown the effectiveness of LamBERTa, and also its superiority against widely used deep-learning text classifiers and a few-shot learner conceived for an attribute-aware prediction task.</p></div>\",\"PeriodicalId\":51336,\"journal\":{\"name\":\"Artificial Intelligence and Law\",\"volume\":\"30 3\",\"pages\":\"417 - 473\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2021-09-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s10506-021-09301-8.pdf\",\"citationCount\":\"26\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Artificial Intelligence and Law\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10506-021-09301-8\",\"RegionNum\":2,\"RegionCategory\":\"社会学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Artificial Intelligence and Law","FirstCategoryId":"94","ListUrlMain":"https://link.springer.com/article/10.1007/s10506-021-09301-8","RegionNum":2,"RegionCategory":"社会学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Unsupervised law article mining based on deep pre-trained language representation models with application to the Italian civil code
Modeling law search and retrieval as prediction problems has recently emerged as a predominant approach in law intelligence. Focusing on the law article retrieval task, we present a deep learning framework named LamBERTa, which is designed for civil-law codes, and specifically trained on the Italian civil code. To our knowledge, this is the first study proposing an advanced approach to law article prediction for the Italian legal system based on a BERT (Bidirectional Encoder Representations from Transformers) learning framework, which has recently attracted increased attention among deep learning approaches, showing outstanding effectiveness in several natural language processing and learning tasks. We define LamBERTa models by fine-tuning an Italian pre-trained BERT on the Italian civil code or its portions, for law article retrieval as a classification task. One key aspect of our LamBERTa framework is that we conceived it to address an extreme classification scenario, which is characterized by a high number of classes, the few-shot learning problem, and the lack of test query benchmarks for Italian legal prediction tasks. To solve such issues, we define different methods for the unsupervised labeling of the law articles, which can in principle be applied to any law article code system. We provide insights into the explainability and interpretability of our LamBERTa models, and we present an extensive experimental analysis over query sets of different type, for single-label as well as multi-label evaluation tasks. Empirical evidence has shown the effectiveness of LamBERTa, and also its superiority against widely used deep-learning text classifiers and a few-shot learner conceived for an attribute-aware prediction task.
期刊介绍:
Artificial Intelligence and Law is an international forum for the dissemination of original interdisciplinary research in the following areas: Theoretical or empirical studies in artificial intelligence (AI), cognitive psychology, jurisprudence, linguistics, or philosophy which address the development of formal or computational models of legal knowledge, reasoning, and decision making. In-depth studies of innovative artificial intelligence systems that are being used in the legal domain. Studies which address the legal, ethical and social implications of the field of Artificial Intelligence and Law.
Topics of interest include, but are not limited to, the following: Computational models of legal reasoning and decision making; judgmental reasoning, adversarial reasoning, case-based reasoning, deontic reasoning, and normative reasoning. Formal representation of legal knowledge: deontic notions, normative
modalities, rights, factors, values, rules. Jurisprudential theories of legal reasoning. Specialized logics for law. Psychological and linguistic studies concerning legal reasoning. Legal expert systems; statutory systems, legal practice systems, predictive systems, and normative systems. AI and law support for legislative drafting, judicial decision-making, and
public administration. Intelligent processing of legal documents; conceptual retrieval of cases and statutes, automatic text understanding, intelligent document assembly systems, hypertext, and semantic markup of legal documents. Intelligent processing of legal information on the World Wide Web, legal ontologies, automated intelligent legal agents, electronic legal institutions, computational models of legal texts. Ramifications for AI and Law in e-Commerce, automatic contracting and negotiation, digital rights management, and automated dispute resolution. Ramifications for AI and Law in e-governance, e-government, e-Democracy, and knowledge-based systems supporting public services, public dialogue and mediation. Intelligent computer-assisted instructional systems in law or ethics. Evaluation and auditing techniques for legal AI systems. Systemic problems in the construction and delivery of legal AI systems. Impact of AI on the law and legal institutions. Ethical issues concerning legal AI systems. In addition to original research contributions, the Journal will include a Book Review section, a series of Technology Reports describing existing and emerging products, applications and technologies, and a Research Notes section of occasional essays posing interesting and timely research challenges for the field of Artificial Intelligence and Law. Financial support for the Journal of Artificial Intelligence and Law is provided by the University of Pittsburgh School of Law.