{"title":"粗糙波动和伏特拉过程下的投资组合保险","authors":"Jean-Loup Dupret, Donatien Hainaut","doi":"10.1142/s0219024921500369","DOIUrl":null,"url":null,"abstract":"Affine Volterra processes have gained more and more interest in recent years. In particular, this class of processes generalizes the classical Heston model and the more recent rough Heston model. The aim of this work is hence to revisit and generalize the constant proportion portfolio insurance (CPPI) under affine Volterra processes. Indeed, existing simulation-based methods for CPPI do not apply easily to this class of processes. We instead propose an approach based on the characteristic function of the log-cushion which appears to be more consistent, stable and particularly efficient in the case of saffine Volterra processes compared with the existing simulation techniques. Using such approach, we describe in this paper several properties of CPPI which naturally result from the form of the log-cushion’s characteristic function under affine Volterra processes. This allows to consider more realistic dynamics for the underlying risky asset in the context of CPPI and hence build portfolio strategies that are more consistent with financial data. In particular, we address the case of the rough Heston model, known to be extremely consistent with past data of volatility. By providing a new estimation procedure for its parameters based on the PMCMC algorithm, we manage to study more accurately the true properties of such CPPI strategy and to better handle the risk associated with it.","PeriodicalId":47022,"journal":{"name":"International Journal of Theoretical and Applied Finance","volume":" ","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2021-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"PORTFOLIO INSURANCE UNDER ROUGH VOLATILITY AND VOLTERRA PROCESSES\",\"authors\":\"Jean-Loup Dupret, Donatien Hainaut\",\"doi\":\"10.1142/s0219024921500369\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Affine Volterra processes have gained more and more interest in recent years. In particular, this class of processes generalizes the classical Heston model and the more recent rough Heston model. The aim of this work is hence to revisit and generalize the constant proportion portfolio insurance (CPPI) under affine Volterra processes. Indeed, existing simulation-based methods for CPPI do not apply easily to this class of processes. We instead propose an approach based on the characteristic function of the log-cushion which appears to be more consistent, stable and particularly efficient in the case of saffine Volterra processes compared with the existing simulation techniques. Using such approach, we describe in this paper several properties of CPPI which naturally result from the form of the log-cushion’s characteristic function under affine Volterra processes. This allows to consider more realistic dynamics for the underlying risky asset in the context of CPPI and hence build portfolio strategies that are more consistent with financial data. In particular, we address the case of the rough Heston model, known to be extremely consistent with past data of volatility. By providing a new estimation procedure for its parameters based on the PMCMC algorithm, we manage to study more accurately the true properties of such CPPI strategy and to better handle the risk associated with it.\",\"PeriodicalId\":47022,\"journal\":{\"name\":\"International Journal of Theoretical and Applied Finance\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2021-11-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Theoretical and Applied Finance\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/s0219024921500369\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BUSINESS, FINANCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Theoretical and Applied Finance","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s0219024921500369","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BUSINESS, FINANCE","Score":null,"Total":0}
PORTFOLIO INSURANCE UNDER ROUGH VOLATILITY AND VOLTERRA PROCESSES
Affine Volterra processes have gained more and more interest in recent years. In particular, this class of processes generalizes the classical Heston model and the more recent rough Heston model. The aim of this work is hence to revisit and generalize the constant proportion portfolio insurance (CPPI) under affine Volterra processes. Indeed, existing simulation-based methods for CPPI do not apply easily to this class of processes. We instead propose an approach based on the characteristic function of the log-cushion which appears to be more consistent, stable and particularly efficient in the case of saffine Volterra processes compared with the existing simulation techniques. Using such approach, we describe in this paper several properties of CPPI which naturally result from the form of the log-cushion’s characteristic function under affine Volterra processes. This allows to consider more realistic dynamics for the underlying risky asset in the context of CPPI and hence build portfolio strategies that are more consistent with financial data. In particular, we address the case of the rough Heston model, known to be extremely consistent with past data of volatility. By providing a new estimation procedure for its parameters based on the PMCMC algorithm, we manage to study more accurately the true properties of such CPPI strategy and to better handle the risk associated with it.
期刊介绍:
The shift of the financial market towards the general use of advanced mathematical methods has led to the introduction of state-of-the-art quantitative tools into the world of finance. The International Journal of Theoretical and Applied Finance (IJTAF) brings together international experts involved in the mathematical modelling of financial instruments as well as the application of these models to global financial markets. The development of complex financial products has led to new challenges to the regulatory bodies. Financial instruments that have been designed to serve the needs of the mature capitals market need to be adapted for application in the emerging markets.