基于SLFNs插值指纹粒子滤波的共享单车跟踪算法

Honghua Cao, Xiaoyan Yan, Yan Li
{"title":"基于SLFNs插值指纹粒子滤波的共享单车跟踪算法","authors":"Honghua Cao, Xiaoyan Yan, Yan Li","doi":"10.1504/ijica.2020.10029124","DOIUrl":null,"url":null,"abstract":"In order to improve the performance of traditional fingerprint detection method in the process of tracking the shared bicycle, the inertial sensor is used for data measurement. The particle filter (PF) method is a widely used sensor fusion algorithm, but the initialisation and weighting processes are problematic in shared bicycle positioning systems. In this paper, a new PF scheme is proposed, and it can produces smooth and stable localised knowledge. However, the feed-forward network that uses the single hidden layer is used to simulate the estimation and improvement of the performance of multiple probability to achieve the distinction of similar fingerprints. At the same time, the random sample consensus algorithm (RANSAC) is used to initialise the algorithm so as to reduce the convergence time. Experiments show that the tracking error of this scheme is less than 1.2 m, which is superior to the selected comparison method.","PeriodicalId":39390,"journal":{"name":"International Journal of Innovative Computing and Applications","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"SLFNs interpolation fingerprint particle filter-based shared bicycle tracking algorithm\",\"authors\":\"Honghua Cao, Xiaoyan Yan, Yan Li\",\"doi\":\"10.1504/ijica.2020.10029124\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In order to improve the performance of traditional fingerprint detection method in the process of tracking the shared bicycle, the inertial sensor is used for data measurement. The particle filter (PF) method is a widely used sensor fusion algorithm, but the initialisation and weighting processes are problematic in shared bicycle positioning systems. In this paper, a new PF scheme is proposed, and it can produces smooth and stable localised knowledge. However, the feed-forward network that uses the single hidden layer is used to simulate the estimation and improvement of the performance of multiple probability to achieve the distinction of similar fingerprints. At the same time, the random sample consensus algorithm (RANSAC) is used to initialise the algorithm so as to reduce the convergence time. Experiments show that the tracking error of this scheme is less than 1.2 m, which is superior to the selected comparison method.\",\"PeriodicalId\":39390,\"journal\":{\"name\":\"International Journal of Innovative Computing and Applications\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-04-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Innovative Computing and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1504/ijica.2020.10029124\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Innovative Computing and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/ijica.2020.10029124","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

摘要

为了提高传统指纹检测方法在共享单车跟踪过程中的性能,采用惯性传感器进行数据测量。粒子滤波(PF)方法是一种应用广泛的传感器融合算法,但其初始化和加权过程在共享单车定位系统中存在问题。本文提出了一种新的PF方案,该方案能够产生光滑稳定的局部知识。而利用单隐层的前馈网络,模拟多重概率的估计和性能改进,实现相似指纹的区分。同时,采用随机样本一致性算法(RANSAC)对算法进行初始化,以缩短收敛时间。实验表明,该方案的跟踪误差小于1.2 m,优于所选的比较法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
SLFNs interpolation fingerprint particle filter-based shared bicycle tracking algorithm
In order to improve the performance of traditional fingerprint detection method in the process of tracking the shared bicycle, the inertial sensor is used for data measurement. The particle filter (PF) method is a widely used sensor fusion algorithm, but the initialisation and weighting processes are problematic in shared bicycle positioning systems. In this paper, a new PF scheme is proposed, and it can produces smooth and stable localised knowledge. However, the feed-forward network that uses the single hidden layer is used to simulate the estimation and improvement of the performance of multiple probability to achieve the distinction of similar fingerprints. At the same time, the random sample consensus algorithm (RANSAC) is used to initialise the algorithm so as to reduce the convergence time. Experiments show that the tracking error of this scheme is less than 1.2 m, which is superior to the selected comparison method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.40
自引率
0.00%
发文量
23
期刊介绍: IJICA proposes and fosters discussion on all new computing paradigms and corresponding applications to solve real-world problems. It will cover all aspects related to evolutionary computation, quantum-inspired computing, swarm-based computing, neuro-computing, DNA computing and fuzzy computing, as well as other new computing paradigms
期刊最新文献
Evaluation of banknote identification methodologies based on local and deep features Multilevel CNN for anterior chamber angle classification using AS-OCT images Transfer learning-based lung segmentation and pneumonia detection for paediatric chest X-ray images Wind turbine fault detection: a semi-supervised learning approach with two different dimensionality reduction techniques Heuristic-based approaches for fracture detection in borehole images
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1