{"title":"不同升温速率下毛茛枝非等温热解动力学和热力学研究","authors":"Narra Thejaswini, Praveen Kumar Reddy Annapureddy, Draksharapu Rammohan, Nanda Kishore","doi":"10.1002/kin.21677","DOIUrl":null,"url":null,"abstract":"<p>Non-isothermal thermogravimetric tests of <i>Terminalia chebula</i> (Helikha) were conducted under inert N<sub>2</sub> gas environment for temperatures (25–900°C) at heating rates of 10, 20, 35, and 55°C min<sup>−1</sup>. Kinetic triplet approximated employing five iso-conversional methods namely, differential Friedman method (DFM), distributed activation method (DAEM), Ozawa–Flynn–Wall (OFW), Kissinger–Akahira–Sunose (KAS), and Starink (STK). Average values of activation energy (kJ mol<sup>−1</sup>) and frequency factor (min<sup>−1</sup>) calculated by the five models were 227.11, 2.98 × 10<sup>21</sup> for DFM; 229.21, 4.63 × 10<sup>21</sup> for KAS; 227.11, 3.81 × 10<sup>20</sup> for OFW; 225.54, 1.15 × 10<sup>18</sup> for STK; and 227.33, 3.02 × 10<sup>20</sup> for DAEM respectively over the conversion range up to 0.8. In the kinetics study, correlation coefficient (<i>R</i><sup>2</sup>) of greater than 0.97 is noticed in the conversion range of <i>α</i> = 0.1–0.8 for all models. From thermodynamic analysis, average values of Δ<i>H</i> (kJ mol<sup>−1</sup>), Δ<i>G</i> (kJ mol<sup>−1</sup>), and Δ<i>S</i> (kJ mol<sup>−1</sup> K<sup>−1</sup>) for DAEM: 221.8, 179.69, and 0.065; for DFM: 236.40, 179.37, and 0.089; for KAS: 221.8, 179.69, and 0.065; for OFW: 220.22, 179.72, and 0.063; and for STK: 222.02, 179.68, and 0.066 were estimated to assess viability and reactivity of the process. Criado's master plots revealed that the data obtained from pyrolysis of selected biomass was followed a multistep reaction pathway.</p>","PeriodicalId":13894,"journal":{"name":"International Journal of Chemical Kinetics","volume":"55 11","pages":"673-687"},"PeriodicalIF":1.5000,"publicationDate":"2023-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Kinetics and thermodynamics of non-isothermal pyrolysis of Terminalia chebula branches at different heating rates\",\"authors\":\"Narra Thejaswini, Praveen Kumar Reddy Annapureddy, Draksharapu Rammohan, Nanda Kishore\",\"doi\":\"10.1002/kin.21677\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Non-isothermal thermogravimetric tests of <i>Terminalia chebula</i> (Helikha) were conducted under inert N<sub>2</sub> gas environment for temperatures (25–900°C) at heating rates of 10, 20, 35, and 55°C min<sup>−1</sup>. Kinetic triplet approximated employing five iso-conversional methods namely, differential Friedman method (DFM), distributed activation method (DAEM), Ozawa–Flynn–Wall (OFW), Kissinger–Akahira–Sunose (KAS), and Starink (STK). Average values of activation energy (kJ mol<sup>−1</sup>) and frequency factor (min<sup>−1</sup>) calculated by the five models were 227.11, 2.98 × 10<sup>21</sup> for DFM; 229.21, 4.63 × 10<sup>21</sup> for KAS; 227.11, 3.81 × 10<sup>20</sup> for OFW; 225.54, 1.15 × 10<sup>18</sup> for STK; and 227.33, 3.02 × 10<sup>20</sup> for DAEM respectively over the conversion range up to 0.8. In the kinetics study, correlation coefficient (<i>R</i><sup>2</sup>) of greater than 0.97 is noticed in the conversion range of <i>α</i> = 0.1–0.8 for all models. From thermodynamic analysis, average values of Δ<i>H</i> (kJ mol<sup>−1</sup>), Δ<i>G</i> (kJ mol<sup>−1</sup>), and Δ<i>S</i> (kJ mol<sup>−1</sup> K<sup>−1</sup>) for DAEM: 221.8, 179.69, and 0.065; for DFM: 236.40, 179.37, and 0.089; for KAS: 221.8, 179.69, and 0.065; for OFW: 220.22, 179.72, and 0.063; and for STK: 222.02, 179.68, and 0.066 were estimated to assess viability and reactivity of the process. Criado's master plots revealed that the data obtained from pyrolysis of selected biomass was followed a multistep reaction pathway.</p>\",\"PeriodicalId\":13894,\"journal\":{\"name\":\"International Journal of Chemical Kinetics\",\"volume\":\"55 11\",\"pages\":\"673-687\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2023-07-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Chemical Kinetics\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/kin.21677\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Chemical Kinetics","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/kin.21677","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Kinetics and thermodynamics of non-isothermal pyrolysis of Terminalia chebula branches at different heating rates
Non-isothermal thermogravimetric tests of Terminalia chebula (Helikha) were conducted under inert N2 gas environment for temperatures (25–900°C) at heating rates of 10, 20, 35, and 55°C min−1. Kinetic triplet approximated employing five iso-conversional methods namely, differential Friedman method (DFM), distributed activation method (DAEM), Ozawa–Flynn–Wall (OFW), Kissinger–Akahira–Sunose (KAS), and Starink (STK). Average values of activation energy (kJ mol−1) and frequency factor (min−1) calculated by the five models were 227.11, 2.98 × 1021 for DFM; 229.21, 4.63 × 1021 for KAS; 227.11, 3.81 × 1020 for OFW; 225.54, 1.15 × 1018 for STK; and 227.33, 3.02 × 1020 for DAEM respectively over the conversion range up to 0.8. In the kinetics study, correlation coefficient (R2) of greater than 0.97 is noticed in the conversion range of α = 0.1–0.8 for all models. From thermodynamic analysis, average values of ΔH (kJ mol−1), ΔG (kJ mol−1), and ΔS (kJ mol−1 K−1) for DAEM: 221.8, 179.69, and 0.065; for DFM: 236.40, 179.37, and 0.089; for KAS: 221.8, 179.69, and 0.065; for OFW: 220.22, 179.72, and 0.063; and for STK: 222.02, 179.68, and 0.066 were estimated to assess viability and reactivity of the process. Criado's master plots revealed that the data obtained from pyrolysis of selected biomass was followed a multistep reaction pathway.
期刊介绍:
As the leading archival journal devoted exclusively to chemical kinetics, the International Journal of Chemical Kinetics publishes original research in gas phase, condensed phase, and polymer reaction kinetics, as well as biochemical and surface kinetics. The Journal seeks to be the primary archive for careful experimental measurements of reaction kinetics, in both simple and complex systems. The Journal also presents new developments in applied theoretical kinetics and publishes large kinetic models, and the algorithms and estimates used in these models. These include methods for handling the large reaction networks important in biochemistry, catalysis, and free radical chemistry. In addition, the Journal explores such topics as the quantitative relationships between molecular structure and chemical reactivity, organic/inorganic chemistry and reaction mechanisms, and the reactive chemistry at interfaces.