间隔接收机高频多普勒雷达准垂直入射记录的多普勒光谱时间变化的综合

Q4 Physics and Astronomy Radio Physics and Radio Astronomy Pub Date : 2021-09-14 DOI:10.15407/rpra26.03.211
V. F. Pushin, L. Chernogor
{"title":"间隔接收机高频多普勒雷达准垂直入射记录的多普勒光谱时间变化的综合","authors":"V. F. Pushin, L. Chernogor","doi":"10.15407/rpra26.03.211","DOIUrl":null,"url":null,"abstract":"Purpose: The ionospheric channel is widely used for the communication, radio navigation, radar, direction finding, radio astronomy, and remote radio probing systems. The radio channel parameters are characterized by nonstationarity due to the dynamic processes in the ionosphere, and therefore their study is one of the topical problems of space radio physics and earth-space radio physics of geospace. This work aims at presenting the results of synthesis of temporal variations in the Doppler spectra obtained by the Doppler probing of the ionosphere at vertical and quasi-vertical incidence. Design/methotology/approach: One of the most effective methods of ionosphere research is the Doppler sounding technique. It has a high time resolution (about 10 s), a Doppler shift resolution (0.01–0.1 Hz), and the accuracy of Doppler shift measurements (~0.01 Hz) that permits monitoring the variations in the ionospheric electron density (10–4–10–3) or the study of the ionospheric plasma motion with the speed of 0.1-1 m/s and greater. The solution of the inverse radio physical problem, consisting in determination of the ionosphere parameters, often means solving the direct radio physical problem. In the Doppler sounding technique, it belongs with the construction of variations in Doppler spectra and comparing them with the Doppler spectra measurements. Findings: For the radio wave ordinary component, three echoes being produced by three rays are observed. Influence of the geomagnetic fi eld and large horizontal gradients in the electron density of δ≥10 % give rise to complex ray structures with caustic surfaces. The ionospheric disturbances traveling along the magnetic meridian form the skip zones. The longitudinal and transverse displacement of the ray reflection point attains a few tens of kilometers along the vil. Haidary to vil. Hrakove quasi-vertical radiowave propagation path, for which the great circle range is 50 km. For the vertical incidence, the signal azimuth at the receiver coincides with the traveling ionospheric disturbance azimuth. The synthesis of temporal variations in the HF Doppler spectra has been made and compared with the temporal variations in the Doppler spectra recorded with the V. N. Karazin Kharkiv National University radar. The estimate of δ=15 % obtained confirms the existence of large horizontal gradients in electron density. Conclusions: Temporal variations in Doppler spectra and in azimuth have been calculated for the vertical and quasi-vertical incidence with allowance for large horizontal gradients of the electron density caused by traveling ionospheric disturbances. Key words: ionosphere, Doppler sounding at oblique incidence, synthesis of temporal variations in HF Doppler spectra, traveling ionospheric disturbances, electron density","PeriodicalId":33380,"journal":{"name":"Radio Physics and Radio Astronomy","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A SYNTHESIS OF TEMPORAL VARIATIONS IN DOPPLER SPECTRA RECORDED AT A QUASI-VERTICAL INCIDENCE BY THE HF DOPPLER RADAR WITH SPACED RECEIVERS\",\"authors\":\"V. F. Pushin, L. Chernogor\",\"doi\":\"10.15407/rpra26.03.211\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Purpose: The ionospheric channel is widely used for the communication, radio navigation, radar, direction finding, radio astronomy, and remote radio probing systems. The radio channel parameters are characterized by nonstationarity due to the dynamic processes in the ionosphere, and therefore their study is one of the topical problems of space radio physics and earth-space radio physics of geospace. This work aims at presenting the results of synthesis of temporal variations in the Doppler spectra obtained by the Doppler probing of the ionosphere at vertical and quasi-vertical incidence. Design/methotology/approach: One of the most effective methods of ionosphere research is the Doppler sounding technique. It has a high time resolution (about 10 s), a Doppler shift resolution (0.01–0.1 Hz), and the accuracy of Doppler shift measurements (~0.01 Hz) that permits monitoring the variations in the ionospheric electron density (10–4–10–3) or the study of the ionospheric plasma motion with the speed of 0.1-1 m/s and greater. The solution of the inverse radio physical problem, consisting in determination of the ionosphere parameters, often means solving the direct radio physical problem. In the Doppler sounding technique, it belongs with the construction of variations in Doppler spectra and comparing them with the Doppler spectra measurements. Findings: For the radio wave ordinary component, three echoes being produced by three rays are observed. Influence of the geomagnetic fi eld and large horizontal gradients in the electron density of δ≥10 % give rise to complex ray structures with caustic surfaces. The ionospheric disturbances traveling along the magnetic meridian form the skip zones. The longitudinal and transverse displacement of the ray reflection point attains a few tens of kilometers along the vil. Haidary to vil. Hrakove quasi-vertical radiowave propagation path, for which the great circle range is 50 km. For the vertical incidence, the signal azimuth at the receiver coincides with the traveling ionospheric disturbance azimuth. The synthesis of temporal variations in the HF Doppler spectra has been made and compared with the temporal variations in the Doppler spectra recorded with the V. N. Karazin Kharkiv National University radar. The estimate of δ=15 % obtained confirms the existence of large horizontal gradients in electron density. Conclusions: Temporal variations in Doppler spectra and in azimuth have been calculated for the vertical and quasi-vertical incidence with allowance for large horizontal gradients of the electron density caused by traveling ionospheric disturbances. Key words: ionosphere, Doppler sounding at oblique incidence, synthesis of temporal variations in HF Doppler spectra, traveling ionospheric disturbances, electron density\",\"PeriodicalId\":33380,\"journal\":{\"name\":\"Radio Physics and Radio Astronomy\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-09-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Radio Physics and Radio Astronomy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15407/rpra26.03.211\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Physics and Astronomy\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Radio Physics and Radio Astronomy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15407/rpra26.03.211","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 0

摘要

用途:电离层信道广泛用于通信、无线电导航、雷达、测向、射电天文学和远程无线电探测系统。由于电离层中的动力学过程,无线电信道参数具有非平稳性,因此对其的研究是空间无线电物理和地球空间无线电物理的热点问题之一。这项工作旨在介绍多普勒探测电离层在垂直和准垂直入射下获得的多普勒频谱的时间变化的合成结果。设计/方法论/方法:电离层研究最有效的方法之一是多普勒探测技术。它具有高时间分辨率(约10 s)、多普勒频移分辨率(0.01–0.1 Hz)和多普勒频移测量精度(~0.01 Hz),可以监测电离层电子密度的变化(10-4–10-3)或研究速度为0.1-1 m/s或更高的电离层等离子体运动。无线电逆物理问题的解决,包括电离层参数的确定,通常意味着解决直接的无线电物理问题。在多普勒探测技术中,它属于多普勒频谱变化的构造,并将其与多普勒频谱测量值进行比较。研究结果:对于无线电波的普通分量,观测到三条射线产生的三个回波。地磁场和电子密度δ≥10%的大水平梯度的影响导致了具有焦散表面的复杂射线结构。沿磁子午线传播的电离层扰动形成跳跃区。射线反射点的纵向和横向位移沿vil达到几十公里。Haidary至vil。Hrakove准垂直无线电波传播路径,大圆范围为50km。对于垂直入射,接收器处的信号方位角与行进的电离层扰动方位角一致。合成了高频多普勒频谱的时间变化,并与卡拉津-哈尔科夫国立大学雷达记录的多普勒频谱的变化进行了比较。获得的δ=15%的估计值证实了电子密度中存在大的水平梯度。结论:已经计算了垂直和准垂直入射的多普勒频谱和方位角的时间变化,并考虑到旅行电离层扰动引起的电子密度的大水平梯度。关键词:电离层、斜入射多普勒探测、高频多普勒频谱时间变化综合、电离层旅行扰动、电子密度
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A SYNTHESIS OF TEMPORAL VARIATIONS IN DOPPLER SPECTRA RECORDED AT A QUASI-VERTICAL INCIDENCE BY THE HF DOPPLER RADAR WITH SPACED RECEIVERS
Purpose: The ionospheric channel is widely used for the communication, radio navigation, radar, direction finding, radio astronomy, and remote radio probing systems. The radio channel parameters are characterized by nonstationarity due to the dynamic processes in the ionosphere, and therefore their study is one of the topical problems of space radio physics and earth-space radio physics of geospace. This work aims at presenting the results of synthesis of temporal variations in the Doppler spectra obtained by the Doppler probing of the ionosphere at vertical and quasi-vertical incidence. Design/methotology/approach: One of the most effective methods of ionosphere research is the Doppler sounding technique. It has a high time resolution (about 10 s), a Doppler shift resolution (0.01–0.1 Hz), and the accuracy of Doppler shift measurements (~0.01 Hz) that permits monitoring the variations in the ionospheric electron density (10–4–10–3) or the study of the ionospheric plasma motion with the speed of 0.1-1 m/s and greater. The solution of the inverse radio physical problem, consisting in determination of the ionosphere parameters, often means solving the direct radio physical problem. In the Doppler sounding technique, it belongs with the construction of variations in Doppler spectra and comparing them with the Doppler spectra measurements. Findings: For the radio wave ordinary component, three echoes being produced by three rays are observed. Influence of the geomagnetic fi eld and large horizontal gradients in the electron density of δ≥10 % give rise to complex ray structures with caustic surfaces. The ionospheric disturbances traveling along the magnetic meridian form the skip zones. The longitudinal and transverse displacement of the ray reflection point attains a few tens of kilometers along the vil. Haidary to vil. Hrakove quasi-vertical radiowave propagation path, for which the great circle range is 50 km. For the vertical incidence, the signal azimuth at the receiver coincides with the traveling ionospheric disturbance azimuth. The synthesis of temporal variations in the HF Doppler spectra has been made and compared with the temporal variations in the Doppler spectra recorded with the V. N. Karazin Kharkiv National University radar. The estimate of δ=15 % obtained confirms the existence of large horizontal gradients in electron density. Conclusions: Temporal variations in Doppler spectra and in azimuth have been calculated for the vertical and quasi-vertical incidence with allowance for large horizontal gradients of the electron density caused by traveling ionospheric disturbances. Key words: ionosphere, Doppler sounding at oblique incidence, synthesis of temporal variations in HF Doppler spectra, traveling ionospheric disturbances, electron density
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Radio Physics and Radio Astronomy
Radio Physics and Radio Astronomy Physics and Astronomy-Physics and Astronomy (miscellaneous)
CiteScore
0.60
自引率
0.00%
发文量
18
审稿时长
8 weeks
期刊最新文献
GROUND BASED SUPPORT OF THE SPACE MISSION PARKER PERFORMED WITH UKRAINIAN LOW FREQUENCY RADIO TELESCOPES FRACTAL RADIOPHYSICS. Part 2. FRACTAL AND MULTIFRACTAL ANALYSIS METHODS OF SIGNALS AND PROCESSES OMNIDIRECTIONAL MILLIMETER-WAVELENGTH ANTENNAS BASED ON SEGMENTAL DIELECTRIC RESONATORS WHICH SUPPORT WHISPERING GALLERY MODES V. P. SHESTOPALOV AND HIS SCIENTIFIC SCHOOL: FROM QUASISTATICS TO QUASIOPTICS (to mark V.P.'s birth centenary) PROGRESS IN THE STUDY OF DECAMETER-WAVELENGTH SOLAR RADIO EMISSION WITH UKRAINIAN RADIO TELESCOPES. Part 1. (Invited paper)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1