磁性Co3O4纳米粒子的有效制备方法及其催化应用研究

Hakimeh Ardeshirfard, D. Elhamifar
{"title":"磁性Co3O4纳米粒子的有效制备方法及其催化应用研究","authors":"Hakimeh Ardeshirfard, D. Elhamifar","doi":"10.3389/fctls.2023.1194977","DOIUrl":null,"url":null,"abstract":"In this study, magnetic cobalt oxide (Co3O4) nanoparticles (NPs) were synthesized through a new and green method using cobalt chloride hexahydrate (CoCl2.6H2O), pluronic P123 as a stabilizer, and sodium borohydride (NaBH4). The CO3O4 nanoparticles were characterized by diffuse reflectance infrared Fourier transform spectroscopy, powder X-ray diffraction, X-ray photoelectron spectroscopy, energy-dispersive X-ray spectroscopy, scanning electron microscopy, and vibrating sample magnetometer. The magnetic Co3O4 NPs were used as a catalyst with high activity and stability in the synthesis of tetrahydrobenzo[b]pyran derivatives. This reaction was carried out in water, as it is an environmentally friendly solvent, using a low loading of Co3O4 NPs at room temperature. Various derivatives of aldehydes were used as substrates to obtain a high yield of the corresponding tetrahydrobenzo[b]pyrans in short times. In addition, the catalyst was recovered and reused several times with no notable decrease in its activity.","PeriodicalId":73071,"journal":{"name":"Frontiers in catalysis","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"An efficient method for the preparation of magnetic Co3O4 nanoparticles and the study of their catalytic application\",\"authors\":\"Hakimeh Ardeshirfard, D. Elhamifar\",\"doi\":\"10.3389/fctls.2023.1194977\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this study, magnetic cobalt oxide (Co3O4) nanoparticles (NPs) were synthesized through a new and green method using cobalt chloride hexahydrate (CoCl2.6H2O), pluronic P123 as a stabilizer, and sodium borohydride (NaBH4). The CO3O4 nanoparticles were characterized by diffuse reflectance infrared Fourier transform spectroscopy, powder X-ray diffraction, X-ray photoelectron spectroscopy, energy-dispersive X-ray spectroscopy, scanning electron microscopy, and vibrating sample magnetometer. The magnetic Co3O4 NPs were used as a catalyst with high activity and stability in the synthesis of tetrahydrobenzo[b]pyran derivatives. This reaction was carried out in water, as it is an environmentally friendly solvent, using a low loading of Co3O4 NPs at room temperature. Various derivatives of aldehydes were used as substrates to obtain a high yield of the corresponding tetrahydrobenzo[b]pyrans in short times. In addition, the catalyst was recovered and reused several times with no notable decrease in its activity.\",\"PeriodicalId\":73071,\"journal\":{\"name\":\"Frontiers in catalysis\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-05-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in catalysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3389/fctls.2023.1194977\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in catalysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/fctls.2023.1194977","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本研究以六水氯化钴(CoCl2.6H2O)、pluronic P123作为稳定剂和硼氢化钠(NaBH4)为原料,采用绿色新方法合成磁性氧化钴(Co3O4)纳米颗粒(NPs)。采用漫反射红外傅里叶变换光谱、粉末x射线衍射、x射线光电子能谱、能量色散x射线能谱、扫描电镜和振动样品磁强计对CO3O4纳米颗粒进行了表征。以磁性Co3O4 NPs为催化剂,合成了具有高活性和稳定性的四氢苯并吡喃衍生物。该反应是在水中进行的,因为它是一种环保溶剂,在室温下使用低负荷的Co3O4 NPs。以各种醛衍生物为底物,在短时间内获得了相应的四氢苯并[b]吡喃的高产率。此外,该催化剂被多次回收和重复使用,其活性没有明显下降。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
An efficient method for the preparation of magnetic Co3O4 nanoparticles and the study of their catalytic application
In this study, magnetic cobalt oxide (Co3O4) nanoparticles (NPs) were synthesized through a new and green method using cobalt chloride hexahydrate (CoCl2.6H2O), pluronic P123 as a stabilizer, and sodium borohydride (NaBH4). The CO3O4 nanoparticles were characterized by diffuse reflectance infrared Fourier transform spectroscopy, powder X-ray diffraction, X-ray photoelectron spectroscopy, energy-dispersive X-ray spectroscopy, scanning electron microscopy, and vibrating sample magnetometer. The magnetic Co3O4 NPs were used as a catalyst with high activity and stability in the synthesis of tetrahydrobenzo[b]pyran derivatives. This reaction was carried out in water, as it is an environmentally friendly solvent, using a low loading of Co3O4 NPs at room temperature. Various derivatives of aldehydes were used as substrates to obtain a high yield of the corresponding tetrahydrobenzo[b]pyrans in short times. In addition, the catalyst was recovered and reused several times with no notable decrease in its activity.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Combined anodic and cathodic peroxide production in an undivided carbonate/bicarbonate electrolyte with 144% combined current efficiency Novel concepts for the biocatalytic synthesis of second-generation biodiesel Parallel paired electrolysis of green oxidizing agents by the combination of a gas diffusion cathode and boron-doped diamond anode Parallel paired electrolysis of green oxidizing agents by the combination of a gas diffusion cathode and boron-doped diamond anode Biocatalytic route scouting and enzyme screening toward the synthesis of α-benzyl L-glutamate
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1