{"title":"基于鲁棒核极值学习机和分解方法的太阳能发电预测","authors":"I. Majumder, R. Bisoi, N. Nayak, N. Hannoon","doi":"10.1504/ijpec.2020.10027381","DOIUrl":null,"url":null,"abstract":"This paper proposes empirical mode decomposition (EMD)-based robust kernel extreme learning machine (RKELM) to achieve a precise predicted value of solar power generation in a smart grid environment. The non-stationary historical solar power data is initially decomposed into various intrinsic mode functions (IMFs) using EMD, which are subsequently passed through the proposed robust Morlet wavelet kernel extreme learning machine (RWKELM) for solar power prediction at different time horizons. Further a reduced kernel matrix version of RWKELM is used to decrease the training time significantly without appreciable loss of forecasting accuracy. By implementing the real time data for validation of the proposed method for short term solar power prediction it can be observed that the proposed EMD-based RWKELM outperforms various other methods, in terms of different performance matrices and execution time. The solar power prediction results on experimental data show the lowest error which proves the highest prediction accuracy.","PeriodicalId":38524,"journal":{"name":"International Journal of Power and Energy Conversion","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Solar power forecasting using robust kernel extreme learning machine and decomposition methods\",\"authors\":\"I. Majumder, R. Bisoi, N. Nayak, N. Hannoon\",\"doi\":\"10.1504/ijpec.2020.10027381\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes empirical mode decomposition (EMD)-based robust kernel extreme learning machine (RKELM) to achieve a precise predicted value of solar power generation in a smart grid environment. The non-stationary historical solar power data is initially decomposed into various intrinsic mode functions (IMFs) using EMD, which are subsequently passed through the proposed robust Morlet wavelet kernel extreme learning machine (RWKELM) for solar power prediction at different time horizons. Further a reduced kernel matrix version of RWKELM is used to decrease the training time significantly without appreciable loss of forecasting accuracy. By implementing the real time data for validation of the proposed method for short term solar power prediction it can be observed that the proposed EMD-based RWKELM outperforms various other methods, in terms of different performance matrices and execution time. The solar power prediction results on experimental data show the lowest error which proves the highest prediction accuracy.\",\"PeriodicalId\":38524,\"journal\":{\"name\":\"International Journal of Power and Energy Conversion\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-06-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Power and Energy Conversion\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1504/ijpec.2020.10027381\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Energy\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Power and Energy Conversion","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/ijpec.2020.10027381","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Energy","Score":null,"Total":0}
Solar power forecasting using robust kernel extreme learning machine and decomposition methods
This paper proposes empirical mode decomposition (EMD)-based robust kernel extreme learning machine (RKELM) to achieve a precise predicted value of solar power generation in a smart grid environment. The non-stationary historical solar power data is initially decomposed into various intrinsic mode functions (IMFs) using EMD, which are subsequently passed through the proposed robust Morlet wavelet kernel extreme learning machine (RWKELM) for solar power prediction at different time horizons. Further a reduced kernel matrix version of RWKELM is used to decrease the training time significantly without appreciable loss of forecasting accuracy. By implementing the real time data for validation of the proposed method for short term solar power prediction it can be observed that the proposed EMD-based RWKELM outperforms various other methods, in terms of different performance matrices and execution time. The solar power prediction results on experimental data show the lowest error which proves the highest prediction accuracy.
期刊介绍:
IJPEC highlights the latest trends in research in the field of power generation, transmission and distribution. Currently there exist significant challenges in the power sector, particularly in deregulated/restructured power markets. A key challenge to the operation, control and protection of the power system is the proliferation of power electronic devices within power systems. The main thrust of IJPEC is to disseminate the latest research trends in the power sector as well as in energy conversion technologies. Topics covered include: -Power system modelling and analysis -Computing and economics -FACTS and HVDC -Challenges in restructured energy systems -Power system control, operation, communications, SCADA -Power system relaying/protection -Energy management systems/distribution automation -Applications of power electronics to power systems -Power quality -Distributed generation and renewable energy sources -Electrical machines and drives -Utilisation of electrical energy -Modelling and control of machines -Fault diagnosis in machines and drives -Special machines