金属有机框架拓扑指数的约简逆度和邻域度和的计算

IF 1.8 3区 化学 Q3 CHEMISTRY, INORGANIC & NUCLEAR Main Group Metal Chemistry Pub Date : 2022-01-01 DOI:10.1515/mgmc-2022-0009
V. Ravi, Kalyani Desikan
{"title":"金属有机框架拓扑指数的约简逆度和邻域度和的计算","authors":"V. Ravi, Kalyani Desikan","doi":"10.1515/mgmc-2022-0009","DOIUrl":null,"url":null,"abstract":"Abstract Metal-organic frameworks (MOFs) are permeable substances with a high porosity volume, excellent chemical stability, and a distinctive shape created by strong interactions between metal ions and organic ligands. Work on the synthesis, structures, and properties of numerous MOFs demonstrates their usefulness in a variety of applications, including energy storage devices with good electrode materials, gas storage, heterogeneous catalysis, and chemical assessment. The physico-chemical characteristics of the chemical compounds in the underlying molecular graph or structure are predicted by a topological index, which is a numerical invariant. In this article, we look at two different metal-organic frameworks in terms of the number of layers, as well as metal and organic ligands. We compute the reduced reverse degree-based topological indices and some closed neighbourhood degree sum-based topological indices for these frameworks.","PeriodicalId":48891,"journal":{"name":"Main Group Metal Chemistry","volume":"45 1","pages":"92 - 99"},"PeriodicalIF":1.8000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"On computation of the reduced reverse degree and neighbourhood degree sum-based topological indices for metal-organic frameworks\",\"authors\":\"V. Ravi, Kalyani Desikan\",\"doi\":\"10.1515/mgmc-2022-0009\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Metal-organic frameworks (MOFs) are permeable substances with a high porosity volume, excellent chemical stability, and a distinctive shape created by strong interactions between metal ions and organic ligands. Work on the synthesis, structures, and properties of numerous MOFs demonstrates their usefulness in a variety of applications, including energy storage devices with good electrode materials, gas storage, heterogeneous catalysis, and chemical assessment. The physico-chemical characteristics of the chemical compounds in the underlying molecular graph or structure are predicted by a topological index, which is a numerical invariant. In this article, we look at two different metal-organic frameworks in terms of the number of layers, as well as metal and organic ligands. We compute the reduced reverse degree-based topological indices and some closed neighbourhood degree sum-based topological indices for these frameworks.\",\"PeriodicalId\":48891,\"journal\":{\"name\":\"Main Group Metal Chemistry\",\"volume\":\"45 1\",\"pages\":\"92 - 99\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Main Group Metal Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1515/mgmc-2022-0009\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, INORGANIC & NUCLEAR\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Main Group Metal Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1515/mgmc-2022-0009","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
引用次数: 3

摘要

摘要金属-有机骨架(MOFs)是一种可渗透的物质,具有高孔隙率、优异的化学稳定性和由金属离子和有机配体之间的强烈相互作用产生的独特形状。对多种MOFs的合成、结构和性能的研究表明,它们在各种应用中都很有用,包括具有良好电极材料的储能装置、气体储存、多相催化和化学评估。基础分子图或结构中化合物的物理化学特性是通过拓扑指数预测的,拓扑指数是数值不变量。在这篇文章中,我们从层数以及金属和有机配体的角度来研究两种不同的金属有机框架。我们计算了这些框架的约简的基于逆度的拓扑指数和一些基于闭邻域度和的拓扑指数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
On computation of the reduced reverse degree and neighbourhood degree sum-based topological indices for metal-organic frameworks
Abstract Metal-organic frameworks (MOFs) are permeable substances with a high porosity volume, excellent chemical stability, and a distinctive shape created by strong interactions between metal ions and organic ligands. Work on the synthesis, structures, and properties of numerous MOFs demonstrates their usefulness in a variety of applications, including energy storage devices with good electrode materials, gas storage, heterogeneous catalysis, and chemical assessment. The physico-chemical characteristics of the chemical compounds in the underlying molecular graph or structure are predicted by a topological index, which is a numerical invariant. In this article, we look at two different metal-organic frameworks in terms of the number of layers, as well as metal and organic ligands. We compute the reduced reverse degree-based topological indices and some closed neighbourhood degree sum-based topological indices for these frameworks.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Main Group Metal Chemistry
Main Group Metal Chemistry CHEMISTRY, INORGANIC & NUCLEAR-CHEMISTRY, ORGANIC
CiteScore
4.10
自引率
27.80%
发文量
21
审稿时长
4 weeks
期刊介绍: This journal is committed to the publication of short communications, original research, and review articles within the field of main group metal and semi-metal chemistry, Main Group Metal Chemistry is an open-access, peer-reviewed journal that publishes in ongoing way. Papers addressing the theoretical, spectroscopic, mechanistic and synthetic aspects of inorganic, coordination and organometallic main group metal and semi-metal compounds, including zinc, cadmium and mercury are welcome. The journal also publishes studies relating to environmental aspects of these metals, their toxicology, release pathways and fate. Articles on the applications of main group metal chemistry, including in the fields of polymer chemistry, agriculture, electronics and catalysis, are also accepted.
期刊最新文献
Two new zinc(ii) coordination complexes constructed by phenanthroline derivate: Synthesis and structure Retraction to “Aluminium(iii), Fe(ii) Complexes and Dyeing Properties of Apigenin(5,7,4′-trihydroxy flavone)” Synthesis and crystal structure of an ionic phenyltin(iv) complex of N-salicylidene-valine Lithium fluoroarylsilylamides and their structural features On computation of neighbourhood degree sum-based topological indices for zinc-based metal–organic frameworks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1