基于火焰传递函数修正的稳健性燃烧室设计

IF 1.4 4区 工程技术 Q3 ENGINEERING, MECHANICAL International Journal of Spray and Combustion Dynamics Pub Date : 2022-03-01 DOI:10.1177/17568277221088422
J. G. V. von Saldern, J. M. Reumschüssel, J. P. Beuth, C. O. Paschereit, K. Oberleithner
{"title":"基于火焰传递函数修正的稳健性燃烧室设计","authors":"J. G. V. von Saldern, J. M. Reumschüssel, J. P. Beuth, C. O. Paschereit, K. Oberleithner","doi":"10.1177/17568277221088422","DOIUrl":null,"url":null,"abstract":"Operation under stable conditions is an important prerequisite for gas turbine safety. While recent studies have focused primarily on acoustic design to avoid thermoacoustic instabilities, in the present study we shift the focus to improving stability margins by flame transfer function (FTF) modification. The flame transfer function of premixed flames is affected by various mechanisms such as variations in equivalence ratio, swirl fluctuations and shear layer instabilities. These mechanisms can be influenced by modifying parameters such as fuel distribution, injection location, swirl number or gas composition. Based on the Nyquist stability method we formulate criteria for how and at what frequencies the flame transfer function needs to be modified, in order to increase the stability margins of a thermoacoustic system. Gain and phase margin as well as the sensitivity function serve as measures of stability. The criteria are limited to single frequencies, which allows experimental FTF optimization with manageable effort. In the second part of this study it is shown that the Nyquist method can also be used as an efficient and compact way to determine whether the uncertainties of subsystems can affect the overall stability, without requiring eigenvalue calculations.","PeriodicalId":49046,"journal":{"name":"International Journal of Spray and Combustion Dynamics","volume":"14 1","pages":"186 - 196"},"PeriodicalIF":1.4000,"publicationDate":"2022-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Robust combustor design based on flame transfer function modification\",\"authors\":\"J. G. V. von Saldern, J. M. Reumschüssel, J. P. Beuth, C. O. Paschereit, K. Oberleithner\",\"doi\":\"10.1177/17568277221088422\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Operation under stable conditions is an important prerequisite for gas turbine safety. While recent studies have focused primarily on acoustic design to avoid thermoacoustic instabilities, in the present study we shift the focus to improving stability margins by flame transfer function (FTF) modification. The flame transfer function of premixed flames is affected by various mechanisms such as variations in equivalence ratio, swirl fluctuations and shear layer instabilities. These mechanisms can be influenced by modifying parameters such as fuel distribution, injection location, swirl number or gas composition. Based on the Nyquist stability method we formulate criteria for how and at what frequencies the flame transfer function needs to be modified, in order to increase the stability margins of a thermoacoustic system. Gain and phase margin as well as the sensitivity function serve as measures of stability. The criteria are limited to single frequencies, which allows experimental FTF optimization with manageable effort. In the second part of this study it is shown that the Nyquist method can also be used as an efficient and compact way to determine whether the uncertainties of subsystems can affect the overall stability, without requiring eigenvalue calculations.\",\"PeriodicalId\":49046,\"journal\":{\"name\":\"International Journal of Spray and Combustion Dynamics\",\"volume\":\"14 1\",\"pages\":\"186 - 196\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2022-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Spray and Combustion Dynamics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1177/17568277221088422\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Spray and Combustion Dynamics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/17568277221088422","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

摘要

在稳定条件下运行是燃气轮机安全的重要前提。虽然最近的研究主要集中在声学设计上,以避免热声不稳定性,但在本研究中,我们将重点转移到通过火焰传递函数(FTF)修改来提高稳定性裕度。预混火焰的火焰传递函数受到各种机制的影响,如当量比的变化、涡流波动和剪切层的不稳定性。这些机制可能受到修改参数的影响,例如燃料分布、喷射位置、涡流数或气体成分。基于奈奎斯特稳定性方法,我们制定了如何以及在什么频率下修改火焰传递函数的标准,以增加热声系统的稳定裕度。增益和相位裕度以及灵敏度函数用作稳定性的度量。该标准仅限于单个频率,这使得实验FTF优化具有可管理的努力。在本研究的第二部分中,表明奈奎斯特方法也可以作为一种有效而紧凑的方法来确定子系统的不确定性是否会影响整体稳定性,而不需要进行特征值计算。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Robust combustor design based on flame transfer function modification
Operation under stable conditions is an important prerequisite for gas turbine safety. While recent studies have focused primarily on acoustic design to avoid thermoacoustic instabilities, in the present study we shift the focus to improving stability margins by flame transfer function (FTF) modification. The flame transfer function of premixed flames is affected by various mechanisms such as variations in equivalence ratio, swirl fluctuations and shear layer instabilities. These mechanisms can be influenced by modifying parameters such as fuel distribution, injection location, swirl number or gas composition. Based on the Nyquist stability method we formulate criteria for how and at what frequencies the flame transfer function needs to be modified, in order to increase the stability margins of a thermoacoustic system. Gain and phase margin as well as the sensitivity function serve as measures of stability. The criteria are limited to single frequencies, which allows experimental FTF optimization with manageable effort. In the second part of this study it is shown that the Nyquist method can also be used as an efficient and compact way to determine whether the uncertainties of subsystems can affect the overall stability, without requiring eigenvalue calculations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Spray and Combustion Dynamics
International Journal of Spray and Combustion Dynamics THERMODYNAMICS-ENGINEERING, MECHANICAL
CiteScore
2.20
自引率
12.50%
发文量
21
审稿时长
>12 weeks
期刊介绍: International Journal of Spray and Combustion Dynamics is a peer-reviewed open access journal on fundamental and applied research in combustion and spray dynamics. Fundamental topics include advances in understanding unsteady combustion, combustion instability and noise, flame-acoustic interaction and its active and passive control, duct acoustics...
期刊最新文献
Comparison of acoustic, optical, and heat release rate based flame transfer functions for a lean-burn injector under engine-like conditions Numerical study of the linear and non-linear damping in an acoustically forced cold-flow test rig with coupled cavities Intermittency transition to azimuthal instability in a turbulent annular combustor Network- and CFD/CAA-modelling of the high frequency flame response in multi-jet combustors Towards a momentum potential theory for reacting flows
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1