{"title":"不改变物料特性的PD与PID控制液面工艺评价","authors":"S. Raja, N. P. Ananthamoorthy","doi":"10.14447/jnmes.v24i3.a10","DOIUrl":null,"url":null,"abstract":"This article explains the design of fuzzy logic controllers (FLCs) for level processes which is generally used in numerous control operations. The main purpose of the proposed design is to maintain the liquid level in the tank at the desired level. In this paper, the fuzzy logic controller is chosen as the controller for the level process because of its fault tolerance, knowledge representation, expertise, non-linearity, uncertainty, and real-time manipulation. Fuzzy logic controllers have been developed and compared in the Mamdani version. Performance on proportional derivatives (PD) and proportional-integral-derivatives (PID) controllers. Whereas traditional PD and PID controllers are simple, dependable and eliminate steady-state errors, fuzzy logic controllers are rule-based systems that are a logical model of human behavior in processes of the proposed design. The response is provided as follows: The LabVIEW software has been validated. It is used to simulate the proposed system. Comparing error indicators such as PD controller, PID controller, fuzzy logic controller integral absolute error, integral quadratic error, time and absolute error integral, time and quadratic error integral, fuzzy logic controller is observed from the simulation results. increase. It offers better performance than other controllers.","PeriodicalId":16447,"journal":{"name":"Journal of New Materials For Electrochemical Systems","volume":" ","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2021-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Evaluation of Newly Developed Liquid Level Process with PD and PID Controller without Altering Material Characteristics\",\"authors\":\"S. Raja, N. P. Ananthamoorthy\",\"doi\":\"10.14447/jnmes.v24i3.a10\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This article explains the design of fuzzy logic controllers (FLCs) for level processes which is generally used in numerous control operations. The main purpose of the proposed design is to maintain the liquid level in the tank at the desired level. In this paper, the fuzzy logic controller is chosen as the controller for the level process because of its fault tolerance, knowledge representation, expertise, non-linearity, uncertainty, and real-time manipulation. Fuzzy logic controllers have been developed and compared in the Mamdani version. Performance on proportional derivatives (PD) and proportional-integral-derivatives (PID) controllers. Whereas traditional PD and PID controllers are simple, dependable and eliminate steady-state errors, fuzzy logic controllers are rule-based systems that are a logical model of human behavior in processes of the proposed design. The response is provided as follows: The LabVIEW software has been validated. It is used to simulate the proposed system. Comparing error indicators such as PD controller, PID controller, fuzzy logic controller integral absolute error, integral quadratic error, time and absolute error integral, time and quadratic error integral, fuzzy logic controller is observed from the simulation results. increase. It offers better performance than other controllers.\",\"PeriodicalId\":16447,\"journal\":{\"name\":\"Journal of New Materials For Electrochemical Systems\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2021-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of New Materials For Electrochemical Systems\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.14447/jnmes.v24i3.a10\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ELECTROCHEMISTRY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of New Materials For Electrochemical Systems","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.14447/jnmes.v24i3.a10","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
Evaluation of Newly Developed Liquid Level Process with PD and PID Controller without Altering Material Characteristics
This article explains the design of fuzzy logic controllers (FLCs) for level processes which is generally used in numerous control operations. The main purpose of the proposed design is to maintain the liquid level in the tank at the desired level. In this paper, the fuzzy logic controller is chosen as the controller for the level process because of its fault tolerance, knowledge representation, expertise, non-linearity, uncertainty, and real-time manipulation. Fuzzy logic controllers have been developed and compared in the Mamdani version. Performance on proportional derivatives (PD) and proportional-integral-derivatives (PID) controllers. Whereas traditional PD and PID controllers are simple, dependable and eliminate steady-state errors, fuzzy logic controllers are rule-based systems that are a logical model of human behavior in processes of the proposed design. The response is provided as follows: The LabVIEW software has been validated. It is used to simulate the proposed system. Comparing error indicators such as PD controller, PID controller, fuzzy logic controller integral absolute error, integral quadratic error, time and absolute error integral, time and quadratic error integral, fuzzy logic controller is observed from the simulation results. increase. It offers better performance than other controllers.
期刊介绍:
This international Journal is intended for the publication of original work, both analytical and experimental, and of reviews and commercial aspects related to the field of New Materials for Electrochemical Systems. The emphasis will be on research both of a fundamental and an applied nature in various aspects of the development of new materials in electrochemical systems.