FRP / ecc加固混凝土梁的性能研究

IF 4.3 3区 工程技术 Q1 ENGINEERING, CIVIL Journal of Civil Engineering and Management Pub Date : 2022-07-15 DOI:10.3846/jcem.2022.16683
Guorui Sun, J. Lai, Yuzhou Zheng, Kaikai Zheng, Jun Shi
{"title":"FRP / ecc加固混凝土梁的性能研究","authors":"Guorui Sun, J. Lai, Yuzhou Zheng, Kaikai Zheng, Jun Shi","doi":"10.3846/jcem.2022.16683","DOIUrl":null,"url":null,"abstract":"This paper investigates the structural working behavior of reinforced concrete beams bonded with fiber reinforced polymer and engineered cementitious composite materials subjected to bending using structural stressing state theory. First, six reinforced concrete beams externally bonded with composite reinforcement layer and one control beam are tested to investigate the effects of the bond length, fiber reinforced polymer grid thickness and fiber content on the flexural behavior. Then, the finite strain data of RC beams are interpolated by the numerical shape function method. The generalized strain energy density model is established to characterize the stressing state of the structure. Through the MannKendall criterion, the characteristics load P and Q of the beams are detected, and the whole loading process is divided into three stage. Finally, the analysis of the strain and deformation on the beams reveals the effect of different parameters on different stage. The characteristic load P increases as the bond length increases, and the characteristic load Q increases as the thickness of the FRP and the fiber content increase. The vertical deformation of the strengthened beam for the characteristic load Q and ultimate load is significantly smaller than that of the unreinforced beam.","PeriodicalId":15524,"journal":{"name":"Journal of Civil Engineering and Management","volume":" ","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2022-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"INVESTIGATION OF THE PERFORMANCE OF RC BEAMS REINFORCED WITH FRP AND ECC MATERIALS\",\"authors\":\"Guorui Sun, J. Lai, Yuzhou Zheng, Kaikai Zheng, Jun Shi\",\"doi\":\"10.3846/jcem.2022.16683\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper investigates the structural working behavior of reinforced concrete beams bonded with fiber reinforced polymer and engineered cementitious composite materials subjected to bending using structural stressing state theory. First, six reinforced concrete beams externally bonded with composite reinforcement layer and one control beam are tested to investigate the effects of the bond length, fiber reinforced polymer grid thickness and fiber content on the flexural behavior. Then, the finite strain data of RC beams are interpolated by the numerical shape function method. The generalized strain energy density model is established to characterize the stressing state of the structure. Through the MannKendall criterion, the characteristics load P and Q of the beams are detected, and the whole loading process is divided into three stage. Finally, the analysis of the strain and deformation on the beams reveals the effect of different parameters on different stage. The characteristic load P increases as the bond length increases, and the characteristic load Q increases as the thickness of the FRP and the fiber content increase. The vertical deformation of the strengthened beam for the characteristic load Q and ultimate load is significantly smaller than that of the unreinforced beam.\",\"PeriodicalId\":15524,\"journal\":{\"name\":\"Journal of Civil Engineering and Management\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2022-07-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Civil Engineering and Management\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3846/jcem.2022.16683\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Civil Engineering and Management","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3846/jcem.2022.16683","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 1

摘要

本文运用结构应力状态理论研究了纤维增强聚合物与工程胶凝复合材料粘结的钢筋混凝土梁在弯曲作用下的结构工作特性。首先,对6根外粘结复合配筋层的钢筋混凝土梁和1根对照梁进行了试验,研究了粘结长度、纤维增强聚合物网格厚度和纤维含量对其受弯性能的影响。然后,采用数值形函数法对钢筋混凝土梁的有限应变数据进行插值。建立了广义应变能密度模型来表征结构的受力状态。通过MannKendall准则,检测了梁的特征荷载P和Q,并将整个加载过程分为三个阶段。最后,对梁的应变和变形进行了分析,揭示了不同参数对不同阶段的影响。特征载荷P随着粘结长度的增加而增大,特征载荷Q随着FRP的厚度和纤维含量的增加而增大。在特征荷载Q和极限荷载作用下,加固梁的竖向变形明显小于未加固梁。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
INVESTIGATION OF THE PERFORMANCE OF RC BEAMS REINFORCED WITH FRP AND ECC MATERIALS
This paper investigates the structural working behavior of reinforced concrete beams bonded with fiber reinforced polymer and engineered cementitious composite materials subjected to bending using structural stressing state theory. First, six reinforced concrete beams externally bonded with composite reinforcement layer and one control beam are tested to investigate the effects of the bond length, fiber reinforced polymer grid thickness and fiber content on the flexural behavior. Then, the finite strain data of RC beams are interpolated by the numerical shape function method. The generalized strain energy density model is established to characterize the stressing state of the structure. Through the MannKendall criterion, the characteristics load P and Q of the beams are detected, and the whole loading process is divided into three stage. Finally, the analysis of the strain and deformation on the beams reveals the effect of different parameters on different stage. The characteristic load P increases as the bond length increases, and the characteristic load Q increases as the thickness of the FRP and the fiber content increase. The vertical deformation of the strengthened beam for the characteristic load Q and ultimate load is significantly smaller than that of the unreinforced beam.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.70
自引率
4.70%
发文量
0
审稿时长
1.7 months
期刊介绍: The Journal of Civil Engineering and Management is a peer-reviewed journal that provides an international forum for the dissemination of the latest original research, achievements and developments. We publish for researchers, designers, users and manufacturers in the different fields of civil engineering and management. The journal publishes original articles that present new information and reviews. Our objective is to provide essential information and new ideas to help improve civil engineering competency, efficiency and productivity in world markets. The Journal of Civil Engineering and Management publishes articles in the following fields: building materials and structures, structural mechanics and physics, geotechnical engineering, road and bridge engineering, urban engineering and economy, constructions technology, economy and management, information technologies in construction, fire protection, thermoinsulation and renovation of buildings, labour safety in construction.
期刊最新文献
INTEGRATING ENHANCED OPTIMIZATION WITH FINITE ELEMENT ANALYSIS FOR DESIGNING STEEL STRUCTURE WEIGHT UNDER MULTIPLE CONSTRAINTS RANDOM FIELD-BASED TUNNELING INFORMATION MODELING FRAMEWORK FOR PROBABILISTIC SAFETY ASSESSMENT OF SHIELD TUNNELS SHM-BASED PRACTICAL SAFETY EVALUATION AND VIBRATION CONTROL MODEL FOR STEEL PIPES STUDY OF THE INFLUENCE OF METRO LOADS ON THE DESTRUCTION OF NEARBY BUILDINGS AND CONSTRUCTION STRUCTURES USING BIM TECHNOLOGIES PERFORMANCE EVALUATION OF PALM OIL CLINKER AS CEMENT AND SAND REPLACEMENT MATERIALS IN FOAMED CONCRETE
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1