15n标记硝酸铵温室试验中苏丹高粱草对肥料氮和土壤氮的吸收

IF 2.9 Q2 SOIL SCIENCE Soil Systems Pub Date : 2023-08-03 DOI:10.3390/soilsystems7030071
L. Knebl, A. Gattinger, W. Niether, C. Brock
{"title":"15n标记硝酸铵温室试验中苏丹高粱草对肥料氮和土壤氮的吸收","authors":"L. Knebl, A. Gattinger, W. Niether, C. Brock","doi":"10.3390/soilsystems7030071","DOIUrl":null,"url":null,"abstract":"A greenhouse experiment with sorghum sudangrass (Sorghum bicolor × Sorghum sudanense) and maize (Zea mays) was conducted to assess information on differences in their nitrogen and fertilizer utilization when used as energy crops. The aim was to contribute to the scarce data on sorghum sudangrass as an energy crop with regards to nitrogen derived from fertilizer (NdfF) in the plant’s biomass and fertilizer nitrogen utilization (FNU). Sorghum sudangrass and maize were each grown in eight bags of 45 L volume and harvested at maturity after 154 days. Each crop treatment was further divided in a control treatment (four bags each) that did not receive N fertilization and a fertilization treatment (four bags each) that received 1.76 g N, applying a 15N-labelled liquid ammonium nitrate fertilizer. Fertilization took place at the start of the experiment. After harvest, the whole plant was divided in the fractions “aboveground biomass” (ABM) and “stubble + rootstock” (S + R). Weight, N content and 15N content were recorded for each fraction. In addition, N content and 15N content were assessed in the soil before sowing and after harvest. The experiment showed that FNU of sorghum sudangrass (65%) was significantly higher than that of maize (49%). Both crops accumulated more soil N than fertilizer N. The share of fertilizer N on total N uptake was also higher with sorghum sudangrass (NdfF = 38%) compared to maize (NdfF = 34%). The observations made with our control plant (maize), showed that the results are plausible and comparable to other 15N studies on maize regarding yields, NdfF, and FNU, leading to the assumption that results on sorghum sudangrass are plausible as well. We therefore conclude that the results of our study can be used for the preliminary parametrization of sorghum sudangrass in soil organic matter (SOM) balance at field level.","PeriodicalId":21908,"journal":{"name":"Soil Systems","volume":" ","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2023-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Uptake of Fertilizer Nitrogen and Soil Nitrogen by Sorghum Sudangrass (Sorghum bicolor × Sorghum sudanense) in a Greenhouse Experiment with 15N-Labelled Ammonium Nitrate\",\"authors\":\"L. Knebl, A. Gattinger, W. Niether, C. Brock\",\"doi\":\"10.3390/soilsystems7030071\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A greenhouse experiment with sorghum sudangrass (Sorghum bicolor × Sorghum sudanense) and maize (Zea mays) was conducted to assess information on differences in their nitrogen and fertilizer utilization when used as energy crops. The aim was to contribute to the scarce data on sorghum sudangrass as an energy crop with regards to nitrogen derived from fertilizer (NdfF) in the plant’s biomass and fertilizer nitrogen utilization (FNU). Sorghum sudangrass and maize were each grown in eight bags of 45 L volume and harvested at maturity after 154 days. Each crop treatment was further divided in a control treatment (four bags each) that did not receive N fertilization and a fertilization treatment (four bags each) that received 1.76 g N, applying a 15N-labelled liquid ammonium nitrate fertilizer. Fertilization took place at the start of the experiment. After harvest, the whole plant was divided in the fractions “aboveground biomass” (ABM) and “stubble + rootstock” (S + R). Weight, N content and 15N content were recorded for each fraction. In addition, N content and 15N content were assessed in the soil before sowing and after harvest. The experiment showed that FNU of sorghum sudangrass (65%) was significantly higher than that of maize (49%). Both crops accumulated more soil N than fertilizer N. The share of fertilizer N on total N uptake was also higher with sorghum sudangrass (NdfF = 38%) compared to maize (NdfF = 34%). The observations made with our control plant (maize), showed that the results are plausible and comparable to other 15N studies on maize regarding yields, NdfF, and FNU, leading to the assumption that results on sorghum sudangrass are plausible as well. We therefore conclude that the results of our study can be used for the preliminary parametrization of sorghum sudangrass in soil organic matter (SOM) balance at field level.\",\"PeriodicalId\":21908,\"journal\":{\"name\":\"Soil Systems\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2023-08-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Soil Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/soilsystems7030071\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"SOIL SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Soil Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/soilsystems7030071","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"SOIL SCIENCE","Score":null,"Total":0}
引用次数: 0

摘要

以高粱(sorghum bicolor × sorghum sudanense)和玉米(Zea mays)作为能源作物,对其氮肥利用差异进行了温室试验。目的是为高粱苏丹草作为一种能源作物在植物生物量和肥料氮利用(FNU)方面的肥料衍生氮(NdfF)的稀缺数据做出贡献。高粱、苏丹草和玉米各装入8袋,体积为45升,154天后成熟收获。每个作物处理进一步分为不施肥的对照处理(每4袋)和施肥处理(每4袋),施用15n标记的液体硝酸铵肥,施氮量为1.76 g。在试验开始时进行施肥。收获后,将整株植株分为“地上生物量”(ABM)和“残茬+砧木”(S + R)两个部分,记录每个部分的重量、N含量和15N含量。此外,还测定了播前和收获后土壤中N、15N含量。试验表明,高粱苏丹草的FNU(65%)显著高于玉米(49%)。两种作物的土壤氮素积累量均大于肥料氮素,且肥料氮素在总氮素吸收中所占的份额,高粱苏丹草(NdfF = 38%)高于玉米(NdfF = 34%)。对照植物(玉米)的观察结果表明,在产量、NdfF和FNU方面,该结果与其他15N玉米研究的结果是合理的,并可与之比较,从而假设高粱苏丹草的结果也是合理的。因此,本研究结果可用于高粱苏丹草田间土壤有机质平衡的初步参数化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Uptake of Fertilizer Nitrogen and Soil Nitrogen by Sorghum Sudangrass (Sorghum bicolor × Sorghum sudanense) in a Greenhouse Experiment with 15N-Labelled Ammonium Nitrate
A greenhouse experiment with sorghum sudangrass (Sorghum bicolor × Sorghum sudanense) and maize (Zea mays) was conducted to assess information on differences in their nitrogen and fertilizer utilization when used as energy crops. The aim was to contribute to the scarce data on sorghum sudangrass as an energy crop with regards to nitrogen derived from fertilizer (NdfF) in the plant’s biomass and fertilizer nitrogen utilization (FNU). Sorghum sudangrass and maize were each grown in eight bags of 45 L volume and harvested at maturity after 154 days. Each crop treatment was further divided in a control treatment (four bags each) that did not receive N fertilization and a fertilization treatment (four bags each) that received 1.76 g N, applying a 15N-labelled liquid ammonium nitrate fertilizer. Fertilization took place at the start of the experiment. After harvest, the whole plant was divided in the fractions “aboveground biomass” (ABM) and “stubble + rootstock” (S + R). Weight, N content and 15N content were recorded for each fraction. In addition, N content and 15N content were assessed in the soil before sowing and after harvest. The experiment showed that FNU of sorghum sudangrass (65%) was significantly higher than that of maize (49%). Both crops accumulated more soil N than fertilizer N. The share of fertilizer N on total N uptake was also higher with sorghum sudangrass (NdfF = 38%) compared to maize (NdfF = 34%). The observations made with our control plant (maize), showed that the results are plausible and comparable to other 15N studies on maize regarding yields, NdfF, and FNU, leading to the assumption that results on sorghum sudangrass are plausible as well. We therefore conclude that the results of our study can be used for the preliminary parametrization of sorghum sudangrass in soil organic matter (SOM) balance at field level.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Soil Systems
Soil Systems Earth and Planetary Sciences-Earth-Surface Processes
CiteScore
5.30
自引率
5.70%
发文量
80
审稿时长
11 weeks
期刊最新文献
Structural Shifts in the Soil Prokaryotic Communities Marking the Podzol-Forming Process on Sand Dumps Soil Phytomining: Recent Developments—A Review Selenium and Heavy Metals in Soil–Plant System in a Hydrogeochemical Province with High Selenium Content in Groundwater: A Case Study of the Lower Dniester Valley Tillage and Cover Crop Systems Alter Soil Particle Size Distribution in Raised-Bed-and-Furrow Row-Crop Agroecosystems Shifts in Soil Bacterial Communities under Three-Year Fertilization Management and Multiple Cropping Systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1