Zhen Zhang, Yu Fu, Hualong Li, Jianping Guo, Yuying Pan, Yong Zhang, Weimin Zhang, Jing-hong Wang, Yuefeng Liu, Lu Liu
{"title":"利用叶片光谱反射率监测高温条件下猕猴桃叶片等效水厚度","authors":"Zhen Zhang, Yu Fu, Hualong Li, Jianping Guo, Yuying Pan, Yong Zhang, Weimin Zhang, Jing-hong Wang, Yuefeng Liu, Lu Liu","doi":"10.1080/00387010.2022.2149558","DOIUrl":null,"url":null,"abstract":"Abstract Leaf water status information is highly needed for assessing high temperature stress. Leaf equivalent water thickness (fresh weight − dry weight)/area) is commonly used functional plant trait. Retrieval of leaf equivalent water thickness based on hyperspectral remote sensing has been shown to be rapid and accurate. However, a universal index that is applicable to various plants remains a considerable challenge. Few attempts had been made to monitor kiwifruit leaf equivalent water thickness using hyperspectral vegetation indexes under high temperature stress. In this study, a high temperature stress experiment was conducted in ambient conditions on 29 July–1 August 2021 during the kiwifruit expansion period to obtain a leaf spectrum dataset in the laboratory after the high temperature (above 35 °C) duration time for 1, 2, 3, and 4 days. This study systematically analyzed the performance of hyperspectral vegetation indexes of kiwifruit in estimating leaf equivalent water thickness with the range of 0.02–0.04 g/cm2. Newly developed and published spectral indexes were calculated to estimate kiwifruit leaf equivalent water thickness. Results showed that the newly developed three-band vegetation index (R2039 − R2438)/R752 generated the optimal testing performance for estimating kiwifruit leaf equivalent water thickness, with the coefficient of determination of 0.771, root mean square error of 0.0024 g/cm2, and residual prediction deviation of 2.09, respectively. This study suggests that the kiwifruit leaf equivalent water thickness under high temperature stress could be accurately estimated based on leaf level spectral indexes.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2022-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Monitoring the leaf equivalent water thickness of kiwifruit in high temperature using leaf spectral reflectance\",\"authors\":\"Zhen Zhang, Yu Fu, Hualong Li, Jianping Guo, Yuying Pan, Yong Zhang, Weimin Zhang, Jing-hong Wang, Yuefeng Liu, Lu Liu\",\"doi\":\"10.1080/00387010.2022.2149558\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Leaf water status information is highly needed for assessing high temperature stress. Leaf equivalent water thickness (fresh weight − dry weight)/area) is commonly used functional plant trait. Retrieval of leaf equivalent water thickness based on hyperspectral remote sensing has been shown to be rapid and accurate. However, a universal index that is applicable to various plants remains a considerable challenge. Few attempts had been made to monitor kiwifruit leaf equivalent water thickness using hyperspectral vegetation indexes under high temperature stress. In this study, a high temperature stress experiment was conducted in ambient conditions on 29 July–1 August 2021 during the kiwifruit expansion period to obtain a leaf spectrum dataset in the laboratory after the high temperature (above 35 °C) duration time for 1, 2, 3, and 4 days. This study systematically analyzed the performance of hyperspectral vegetation indexes of kiwifruit in estimating leaf equivalent water thickness with the range of 0.02–0.04 g/cm2. Newly developed and published spectral indexes were calculated to estimate kiwifruit leaf equivalent water thickness. Results showed that the newly developed three-band vegetation index (R2039 − R2438)/R752 generated the optimal testing performance for estimating kiwifruit leaf equivalent water thickness, with the coefficient of determination of 0.771, root mean square error of 0.0024 g/cm2, and residual prediction deviation of 2.09, respectively. This study suggests that the kiwifruit leaf equivalent water thickness under high temperature stress could be accurately estimated based on leaf level spectral indexes.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2022-11-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1080/00387010.2022.2149558\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1080/00387010.2022.2149558","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Monitoring the leaf equivalent water thickness of kiwifruit in high temperature using leaf spectral reflectance
Abstract Leaf water status information is highly needed for assessing high temperature stress. Leaf equivalent water thickness (fresh weight − dry weight)/area) is commonly used functional plant trait. Retrieval of leaf equivalent water thickness based on hyperspectral remote sensing has been shown to be rapid and accurate. However, a universal index that is applicable to various plants remains a considerable challenge. Few attempts had been made to monitor kiwifruit leaf equivalent water thickness using hyperspectral vegetation indexes under high temperature stress. In this study, a high temperature stress experiment was conducted in ambient conditions on 29 July–1 August 2021 during the kiwifruit expansion period to obtain a leaf spectrum dataset in the laboratory after the high temperature (above 35 °C) duration time for 1, 2, 3, and 4 days. This study systematically analyzed the performance of hyperspectral vegetation indexes of kiwifruit in estimating leaf equivalent water thickness with the range of 0.02–0.04 g/cm2. Newly developed and published spectral indexes were calculated to estimate kiwifruit leaf equivalent water thickness. Results showed that the newly developed three-band vegetation index (R2039 − R2438)/R752 generated the optimal testing performance for estimating kiwifruit leaf equivalent water thickness, with the coefficient of determination of 0.771, root mean square error of 0.0024 g/cm2, and residual prediction deviation of 2.09, respectively. This study suggests that the kiwifruit leaf equivalent water thickness under high temperature stress could be accurately estimated based on leaf level spectral indexes.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.