Ali Ergüç, Ege Arzuk, Gökay Albayrak, Fuat Karakuş, Hayati Okur, Şüra Baykan
{"title":"İZOİMPERATORİN ARACILIKLI ANTİKANSER AKTİVİTE: MİTOKONDRİYAL DİSFONKSİYONUN HEPG2 HÜCRELERİNDEKİ ROLÜ","authors":"Ali Ergüç, Ege Arzuk, Gökay Albayrak, Fuat Karakuş, Hayati Okur, Şüra Baykan","doi":"10.33483/jfpau.1312637","DOIUrl":null,"url":null,"abstract":"Objective: The first goal of the present study is to investigate the role of mitochondria due to the Crabtree effect in HepG2 cells exposed to ISO in either glucose- or galactose-conditioned media. The second aim is to predict the interactions between electron transport chain (ETC) complexes and ISO, which might be the possible reason for mitochondrial dysfunction.\nMaterial and Method: Cell viability and membrane damage for HepG2 cells exposed to ISO (12.5, 25, 50, 100, and 250 µM) were assessed by MTT and LDH leakage assays in either glucose- or galactose-conditioned media. The affinity of ISO to ETC complexes was also determined by a molecular docking study.\nResult and Discussion: MTT assay showed that 250 µM ISO leads to cytotoxic activity in glucose-conditioned media, while 25 µM and higher concentrations of ISO decrease cell viability in galactose-conditioned media. A membrane damage assay conducted in a glucose-conditioned media assay revealed that 250 µM ISO disrupts the cell membrane. 100 and 250 µM ISO increased membrane damage in galactose-conditioned media. According to docking simulations, binding affinities of ISO to ETC complexes are in descending order: Complex IV > Complex I > Complex III > Complex II. Inhibition of complex IV by ISO inhibits the transfer of electrons from cytochrome c to oxygen, and the proton gradient collapses. The present study proposed that ISO leads to mitochondrial dysfunction via inhibition of the ETC.","PeriodicalId":7891,"journal":{"name":"Ankara Universitesi Eczacilik Fakultesi Dergisi","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ankara Universitesi Eczacilik Fakultesi Dergisi","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33483/jfpau.1312637","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Pharmacology, Toxicology and Pharmaceutics","Score":null,"Total":0}
İZOİMPERATORİN ARACILIKLI ANTİKANSER AKTİVİTE: MİTOKONDRİYAL DİSFONKSİYONUN HEPG2 HÜCRELERİNDEKİ ROLÜ
Objective: The first goal of the present study is to investigate the role of mitochondria due to the Crabtree effect in HepG2 cells exposed to ISO in either glucose- or galactose-conditioned media. The second aim is to predict the interactions between electron transport chain (ETC) complexes and ISO, which might be the possible reason for mitochondrial dysfunction.
Material and Method: Cell viability and membrane damage for HepG2 cells exposed to ISO (12.5, 25, 50, 100, and 250 µM) were assessed by MTT and LDH leakage assays in either glucose- or galactose-conditioned media. The affinity of ISO to ETC complexes was also determined by a molecular docking study.
Result and Discussion: MTT assay showed that 250 µM ISO leads to cytotoxic activity in glucose-conditioned media, while 25 µM and higher concentrations of ISO decrease cell viability in galactose-conditioned media. A membrane damage assay conducted in a glucose-conditioned media assay revealed that 250 µM ISO disrupts the cell membrane. 100 and 250 µM ISO increased membrane damage in galactose-conditioned media. According to docking simulations, binding affinities of ISO to ETC complexes are in descending order: Complex IV > Complex I > Complex III > Complex II. Inhibition of complex IV by ISO inhibits the transfer of electrons from cytochrome c to oxygen, and the proton gradient collapses. The present study proposed that ISO leads to mitochondrial dysfunction via inhibition of the ETC.