K. Mach, V. Rapprich, M. Faměra, M. Havelcová, T. Matys Grygar, T. Novotný, M. Rehor, Yulia V. Erban Kochergina
{"title":"捷克共和国大多数盆地Libkovice成员富长晶石层:中新世气候最佳期开始时的极端气候或古地理变化?","authors":"K. Mach, V. Rapprich, M. Faměra, M. Havelcová, T. Matys Grygar, T. Novotný, M. Rehor, Yulia V. Erban Kochergina","doi":"10.1344/geologicaacta2021.19.11","DOIUrl":null,"url":null,"abstract":"We describe the occurrence and possible origin of rare beds 1–10cm thick and containing 20–70% of crandallite, a Ca-Al phosphate enriched in Sr and Ba, found within otherwise monotonous clay-rich lacustrine sediments of the Most Basin in the Central-European Neogene Ohře Rift system. The beds were formed at ca. 17.31, 17.06, and 16.88Ma, while the entire suite of monotonous clays of the Libkovice Member was deposited between 17.46 and 16.65Ma. Trace-element and organic geochemistry, Ar-Ar geochronology and C-O-Sr isotope systematics are used to infer their source and processes leading to their formation. The most enigmatic aspect of the formation of the crandallite beds is the removal of a huge amount of phosphorus from its biogenic cycle in the lacustrine system, which was otherwise stable for ca. 0.8My. Formation of detritus-poor crandallite beds could result from some exceptional environmental disruptions that hindered transport of fine clastic material to the basin floor. Silicic volcanic activity in the area of the Pannonian Basin could have triggered this disruption. Crandallite could provide evidence of long-lasting droughts and acidification of the exogenic environment, as they are roughly coeval with the onset of the Miocene Climatic Optimum at ca. 17.0Ma.","PeriodicalId":55107,"journal":{"name":"Geologica Acta","volume":" ","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2021-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Crandallite-rich beds of the Libkovice Member, Most Basin, Czech Republic: climatic extremes or paleogeographic changes at the onset of the Miocene Climatic Optimum?\",\"authors\":\"K. Mach, V. Rapprich, M. Faměra, M. Havelcová, T. Matys Grygar, T. Novotný, M. Rehor, Yulia V. Erban Kochergina\",\"doi\":\"10.1344/geologicaacta2021.19.11\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We describe the occurrence and possible origin of rare beds 1–10cm thick and containing 20–70% of crandallite, a Ca-Al phosphate enriched in Sr and Ba, found within otherwise monotonous clay-rich lacustrine sediments of the Most Basin in the Central-European Neogene Ohře Rift system. The beds were formed at ca. 17.31, 17.06, and 16.88Ma, while the entire suite of monotonous clays of the Libkovice Member was deposited between 17.46 and 16.65Ma. Trace-element and organic geochemistry, Ar-Ar geochronology and C-O-Sr isotope systematics are used to infer their source and processes leading to their formation. The most enigmatic aspect of the formation of the crandallite beds is the removal of a huge amount of phosphorus from its biogenic cycle in the lacustrine system, which was otherwise stable for ca. 0.8My. Formation of detritus-poor crandallite beds could result from some exceptional environmental disruptions that hindered transport of fine clastic material to the basin floor. Silicic volcanic activity in the area of the Pannonian Basin could have triggered this disruption. Crandallite could provide evidence of long-lasting droughts and acidification of the exogenic environment, as they are roughly coeval with the onset of the Miocene Climatic Optimum at ca. 17.0Ma.\",\"PeriodicalId\":55107,\"journal\":{\"name\":\"Geologica Acta\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2021-09-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geologica Acta\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1344/geologicaacta2021.19.11\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"GEOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geologica Acta","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1344/geologicaacta2021.19.11","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOLOGY","Score":null,"Total":0}
Crandallite-rich beds of the Libkovice Member, Most Basin, Czech Republic: climatic extremes or paleogeographic changes at the onset of the Miocene Climatic Optimum?
We describe the occurrence and possible origin of rare beds 1–10cm thick and containing 20–70% of crandallite, a Ca-Al phosphate enriched in Sr and Ba, found within otherwise monotonous clay-rich lacustrine sediments of the Most Basin in the Central-European Neogene Ohře Rift system. The beds were formed at ca. 17.31, 17.06, and 16.88Ma, while the entire suite of monotonous clays of the Libkovice Member was deposited between 17.46 and 16.65Ma. Trace-element and organic geochemistry, Ar-Ar geochronology and C-O-Sr isotope systematics are used to infer their source and processes leading to their formation. The most enigmatic aspect of the formation of the crandallite beds is the removal of a huge amount of phosphorus from its biogenic cycle in the lacustrine system, which was otherwise stable for ca. 0.8My. Formation of detritus-poor crandallite beds could result from some exceptional environmental disruptions that hindered transport of fine clastic material to the basin floor. Silicic volcanic activity in the area of the Pannonian Basin could have triggered this disruption. Crandallite could provide evidence of long-lasting droughts and acidification of the exogenic environment, as they are roughly coeval with the onset of the Miocene Climatic Optimum at ca. 17.0Ma.
期刊介绍:
- Relevant conceptual developments in any area of the Earth Sciences.
- Studies presenting regional synthesis.
- Thematic issues or monographic volumes presenting the results from one or more research groups.
- Short papers reflecting interesting results or works in progress.
- Contributions and results from Research Projects, Workshops, Symposiums, Congresses and any relevant scientific activity related to Earth Sciences.
- Geologica Acta aims to stimulate rapid diffusion of results and efficient exchange of ideas between the widespread communities of Earth Science researchers (with special emphasis on Latinamerica, the Caribbean, Europe, the Mediterranean