冷冻草莓泥中花青素含量的预测

IF 3.6 4区 农林科学 Q2 FOOD SCIENCE & TECHNOLOGY Italian Journal of Food Science Pub Date : 2023-05-25 DOI:10.15586/ijfs.v35i2.2315
Laura García-Curiel, J. G. Pérez-Flores, E. Contreras-López, E. Pérez-Escalante, Aldahir Alberto Hernández-Hernández
{"title":"冷冻草莓泥中花青素含量的预测","authors":"Laura García-Curiel, J. G. Pérez-Flores, E. Contreras-López, E. Pérez-Escalante, Aldahir Alberto Hernández-Hernández","doi":"10.15586/ijfs.v35i2.2315","DOIUrl":null,"url":null,"abstract":"Rapid color degradation during processing and storage is a limitation when using strawberry puree (SP). This work aimed to use image analysis coupled with two machine learning algorithms: ordinary least squares (OLS) and artificial neural networks (ANNs), to predict anthocyanin content (AC) in frozen SP during its storage at –18°C for 120 days. When applying the OLS regression model, unsatisfactory AC prediction values were obtained due to multicollinearity. In contrast, a good prediction of AC using ANNs model was observed by comparing AC in SP predicted by the model versus the experimentally obtained values (coefficient of determination, R2 = 0.977).","PeriodicalId":14670,"journal":{"name":"Italian Journal of Food Science","volume":" ","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2023-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Anthocyanin content prediction in frozen strawberry puree\",\"authors\":\"Laura García-Curiel, J. G. Pérez-Flores, E. Contreras-López, E. Pérez-Escalante, Aldahir Alberto Hernández-Hernández\",\"doi\":\"10.15586/ijfs.v35i2.2315\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Rapid color degradation during processing and storage is a limitation when using strawberry puree (SP). This work aimed to use image analysis coupled with two machine learning algorithms: ordinary least squares (OLS) and artificial neural networks (ANNs), to predict anthocyanin content (AC) in frozen SP during its storage at –18°C for 120 days. When applying the OLS regression model, unsatisfactory AC prediction values were obtained due to multicollinearity. In contrast, a good prediction of AC using ANNs model was observed by comparing AC in SP predicted by the model versus the experimentally obtained values (coefficient of determination, R2 = 0.977).\",\"PeriodicalId\":14670,\"journal\":{\"name\":\"Italian Journal of Food Science\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2023-05-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Italian Journal of Food Science\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.15586/ijfs.v35i2.2315\",\"RegionNum\":4,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"FOOD SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Italian Journal of Food Science","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.15586/ijfs.v35i2.2315","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

当使用草莓泥(SP)时,在加工和储存过程中颜色的快速降解是一个限制。这项工作旨在使用图像分析与两种机器学习算法:普通最小二乘法(OLS)和人工神经网络(ANNs),来预测冷冻SP在–18°C下储存120天期间的花青素含量(AC)。当应用OLS回归模型时,由于多重共线性,获得了不令人满意的AC预测值。相反,通过将模型预测的SP中的AC与实验获得的值(决定系数,R2=0.977)进行比较,观察到使用ANNs模型对AC的良好预测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Anthocyanin content prediction in frozen strawberry puree
Rapid color degradation during processing and storage is a limitation when using strawberry puree (SP). This work aimed to use image analysis coupled with two machine learning algorithms: ordinary least squares (OLS) and artificial neural networks (ANNs), to predict anthocyanin content (AC) in frozen SP during its storage at –18°C for 120 days. When applying the OLS regression model, unsatisfactory AC prediction values were obtained due to multicollinearity. In contrast, a good prediction of AC using ANNs model was observed by comparing AC in SP predicted by the model versus the experimentally obtained values (coefficient of determination, R2 = 0.977).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Italian Journal of Food Science
Italian Journal of Food Science 工程技术-食品科技
CiteScore
4.20
自引率
0.00%
发文量
33
审稿时长
>36 weeks
期刊介绍: "Italian Journal of Food Science" is an international journal publishing original, basic and applied papers, reviews, short communications, surveys and opinions on food science and technology with specific reference to the Mediterranean Region. Its expanded scope includes food production, food engineering, food management, food quality, shelf-life, consumer acceptance of foodstuffs, food safety and nutrition, energy and environmental aspects of food processing on the whole life cycle. Reviews and surveys on specific topics relevant to the advance of the Mediterranean food industry are particularly welcome.
期刊最新文献
Study of oxygen in wines with different proportions of yeast lees Wound-healing potentiation in mice treated with phenolic extracts of Moringa oleifera leaves planted at different climatic areas Evaluation of the durum wheat landrace genetic diversity using agro analysis and its benefit for human health Scrutinizing the antidiabetic, antidiarrheal, and anti-inflammatory activities of methanolic extract of pomegranate peel via different approaches Predizione della preferenza degli attributi dei consumatori cinesi per l'uva da tavola
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1