S. Xu, Weijing Yang, Yufan Liu, Jie Yang, Tongtong Zu, Mengchen Hao, Yang Li, Yichen Xiao
{"title":"高效可见光催化性能的UiO-66/g-C3N4异质结构纳米催化剂的制备","authors":"S. Xu, Weijing Yang, Yufan Liu, Jie Yang, Tongtong Zu, Mengchen Hao, Yang Li, Yichen Xiao","doi":"10.1142/s2251237322500022","DOIUrl":null,"url":null,"abstract":"It is well known that synthetic heterojunction photocatalysts can promote photocatalytic activity. Herein, we successfully combine UiO-66 with [Formula: see text]-C3N4 as ultrathin layer coating via a convenient synthesis method, the photocatalytic performance through the degradation of RhB is then shown efficient. The heterojunction and high surface area give the photocatalysts an ability to promote visible light absorption and strengthen the separation and migration of photogenerated electrons, which ultimately leads to the improvement of photocatalytic degradation. The heterostructure nanocatalyst helps the degradation rate of RhB reach 98.98% in 140[Formula: see text]min under visible light irradiation. In addition, the hole (h[Formula: see text]) plays a major role in the reaction. This work offers an efficient method for the application in the field of environmental degradation.","PeriodicalId":16406,"journal":{"name":"Journal of Molecular and Engineering Materials","volume":" ","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2022-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fabrication of UiO-66/g-C3N4 Heterostructure Nanocatalyst for Efficient Visible-Light Photocatalytic Performance\",\"authors\":\"S. Xu, Weijing Yang, Yufan Liu, Jie Yang, Tongtong Zu, Mengchen Hao, Yang Li, Yichen Xiao\",\"doi\":\"10.1142/s2251237322500022\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"It is well known that synthetic heterojunction photocatalysts can promote photocatalytic activity. Herein, we successfully combine UiO-66 with [Formula: see text]-C3N4 as ultrathin layer coating via a convenient synthesis method, the photocatalytic performance through the degradation of RhB is then shown efficient. The heterojunction and high surface area give the photocatalysts an ability to promote visible light absorption and strengthen the separation and migration of photogenerated electrons, which ultimately leads to the improvement of photocatalytic degradation. The heterostructure nanocatalyst helps the degradation rate of RhB reach 98.98% in 140[Formula: see text]min under visible light irradiation. In addition, the hole (h[Formula: see text]) plays a major role in the reaction. This work offers an efficient method for the application in the field of environmental degradation.\",\"PeriodicalId\":16406,\"journal\":{\"name\":\"Journal of Molecular and Engineering Materials\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2022-05-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Molecular and Engineering Materials\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/s2251237322500022\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Molecular and Engineering Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s2251237322500022","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Fabrication of UiO-66/g-C3N4 Heterostructure Nanocatalyst for Efficient Visible-Light Photocatalytic Performance
It is well known that synthetic heterojunction photocatalysts can promote photocatalytic activity. Herein, we successfully combine UiO-66 with [Formula: see text]-C3N4 as ultrathin layer coating via a convenient synthesis method, the photocatalytic performance through the degradation of RhB is then shown efficient. The heterojunction and high surface area give the photocatalysts an ability to promote visible light absorption and strengthen the separation and migration of photogenerated electrons, which ultimately leads to the improvement of photocatalytic degradation. The heterostructure nanocatalyst helps the degradation rate of RhB reach 98.98% in 140[Formula: see text]min under visible light irradiation. In addition, the hole (h[Formula: see text]) plays a major role in the reaction. This work offers an efficient method for the application in the field of environmental degradation.