{"title":"底层认知无线电环境下MU-MIMO-OFDM系统的混合空间自适应调制和频率随机方法","authors":"Rym Labdaoui, K. Ghanem, F. Y. Ettoumi","doi":"10.3311/ppee.21022","DOIUrl":null,"url":null,"abstract":"In this paper, low complexity rate and power optimization schemes operating in the spatial and frequency domains are proposed in a cognitive radio (CR) setting involving multi-user multiple-input-multiple-output-orthogonal frequency division multiplexing (MU-MIMO-OFDM). Under the assumption of a perfect secondary channel state information (CSI) at the receiver, the presented architectures encompass two main stages. In the first one, spatial power waterfilling-like method is performed per each MIMO subchannel pertaining to each subcarrier of each secondary user (SU). The resulting allocated power per each eigen-channel is considered as the power budget in the second stage. In this latter, stochastic algorithm-based approach wherein the transmit parameters per each subcarrier of each SU are adapted such that to maximize the achievable sum-rate capacity of the SUs. Three different schemes are introduced in this work. First, the derivation of the continuous rate MU-MIMO-OFDM-CR version, referred to as C-MU-MIMO-OFDM-CR is presented. Obviously, this proposition is theoretical and is taken as a benchmark for the two remaining counterparts. The second proposition we called discrete-rate MU-MIMO-OFDM-CR, and briefly designated as D-MU-MIMO-OFDM-CR which is to round the provided allocated rate. Finally, the third modified solution, denoted as P-D-MU-MIMO-OFDM-CR proceeds in a similar way as the D-MU-MIMO-OFDM-CR alternative, but superimposes the non/over-used amount of power to the power budget in next iteration. The simulation results show that, compared to the discrete rate D-MU-MIMO-OFDM-CR solution, the P-D-MU-MIMO-OFDM-CR approach exhibits an approximate power gain of 1 dB when the SNR level is low, and of 5 dB at high SNR range.","PeriodicalId":37664,"journal":{"name":"Periodica polytechnica Electrical engineering and computer science","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Hybrid Spatial Adaptive Modulation and Frequency Stochastic Approach for MU-MIMO-OFDM Systems in the Context of Underlay Cognitive Radios\",\"authors\":\"Rym Labdaoui, K. Ghanem, F. Y. Ettoumi\",\"doi\":\"10.3311/ppee.21022\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, low complexity rate and power optimization schemes operating in the spatial and frequency domains are proposed in a cognitive radio (CR) setting involving multi-user multiple-input-multiple-output-orthogonal frequency division multiplexing (MU-MIMO-OFDM). Under the assumption of a perfect secondary channel state information (CSI) at the receiver, the presented architectures encompass two main stages. In the first one, spatial power waterfilling-like method is performed per each MIMO subchannel pertaining to each subcarrier of each secondary user (SU). The resulting allocated power per each eigen-channel is considered as the power budget in the second stage. In this latter, stochastic algorithm-based approach wherein the transmit parameters per each subcarrier of each SU are adapted such that to maximize the achievable sum-rate capacity of the SUs. Three different schemes are introduced in this work. First, the derivation of the continuous rate MU-MIMO-OFDM-CR version, referred to as C-MU-MIMO-OFDM-CR is presented. Obviously, this proposition is theoretical and is taken as a benchmark for the two remaining counterparts. The second proposition we called discrete-rate MU-MIMO-OFDM-CR, and briefly designated as D-MU-MIMO-OFDM-CR which is to round the provided allocated rate. Finally, the third modified solution, denoted as P-D-MU-MIMO-OFDM-CR proceeds in a similar way as the D-MU-MIMO-OFDM-CR alternative, but superimposes the non/over-used amount of power to the power budget in next iteration. The simulation results show that, compared to the discrete rate D-MU-MIMO-OFDM-CR solution, the P-D-MU-MIMO-OFDM-CR approach exhibits an approximate power gain of 1 dB when the SNR level is low, and of 5 dB at high SNR range.\",\"PeriodicalId\":37664,\"journal\":{\"name\":\"Periodica polytechnica Electrical engineering and computer science\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-08-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Periodica polytechnica Electrical engineering and computer science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3311/ppee.21022\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Computer Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Periodica polytechnica Electrical engineering and computer science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3311/ppee.21022","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Computer Science","Score":null,"Total":0}
A Hybrid Spatial Adaptive Modulation and Frequency Stochastic Approach for MU-MIMO-OFDM Systems in the Context of Underlay Cognitive Radios
In this paper, low complexity rate and power optimization schemes operating in the spatial and frequency domains are proposed in a cognitive radio (CR) setting involving multi-user multiple-input-multiple-output-orthogonal frequency division multiplexing (MU-MIMO-OFDM). Under the assumption of a perfect secondary channel state information (CSI) at the receiver, the presented architectures encompass two main stages. In the first one, spatial power waterfilling-like method is performed per each MIMO subchannel pertaining to each subcarrier of each secondary user (SU). The resulting allocated power per each eigen-channel is considered as the power budget in the second stage. In this latter, stochastic algorithm-based approach wherein the transmit parameters per each subcarrier of each SU are adapted such that to maximize the achievable sum-rate capacity of the SUs. Three different schemes are introduced in this work. First, the derivation of the continuous rate MU-MIMO-OFDM-CR version, referred to as C-MU-MIMO-OFDM-CR is presented. Obviously, this proposition is theoretical and is taken as a benchmark for the two remaining counterparts. The second proposition we called discrete-rate MU-MIMO-OFDM-CR, and briefly designated as D-MU-MIMO-OFDM-CR which is to round the provided allocated rate. Finally, the third modified solution, denoted as P-D-MU-MIMO-OFDM-CR proceeds in a similar way as the D-MU-MIMO-OFDM-CR alternative, but superimposes the non/over-used amount of power to the power budget in next iteration. The simulation results show that, compared to the discrete rate D-MU-MIMO-OFDM-CR solution, the P-D-MU-MIMO-OFDM-CR approach exhibits an approximate power gain of 1 dB when the SNR level is low, and of 5 dB at high SNR range.
期刊介绍:
The main scope of the journal is to publish original research articles in the wide field of electrical engineering and informatics fitting into one of the following five Sections of the Journal: (i) Communication systems, networks and technology, (ii) Computer science and information theory, (iii) Control, signal processing and signal analysis, medical applications, (iv) Components, Microelectronics and Material Sciences, (v) Power engineering and mechatronics, (vi) Mobile Software, Internet of Things and Wearable Devices, (vii) Solid-state lighting and (viii) Vehicular Technology (land, airborne, and maritime mobile services; automotive, radar systems; antennas and radio wave propagation).