Xiaoyin Ge, Mingshu Zhang, Xu An Wang, Jia Liu, Bin Wei
{"title":"情绪驱动可解释的假新闻检测","authors":"Xiaoyin Ge, Mingshu Zhang, Xu An Wang, Jia Liu, Bin Wei","doi":"10.4018/ijdwm.314585","DOIUrl":null,"url":null,"abstract":"Fake news has brought significant challenges to the healthy development of social media. Although current fake news detection methods are advanced, many models directly utilize unselected user comments and do not consider the emotional connection between news content and user comments. The authors propose an emotion-driven explainable fake news detection model (EDI) to solve this problem. The model can select valuable user comments by using sentiment value, obtain the emotional correlation representation between news content and user comments by using collaborative annotation, and obtain the weighted representation of user comments by using the attention mechanism. Experimental results on Twitter and Weibo show that the detection model significantly outperforms the state-of-the-art models and provides reasonable interpretation.","PeriodicalId":54963,"journal":{"name":"International Journal of Data Warehousing and Mining","volume":null,"pages":null},"PeriodicalIF":0.5000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Emotion-Drive Interpretable Fake News Detection\",\"authors\":\"Xiaoyin Ge, Mingshu Zhang, Xu An Wang, Jia Liu, Bin Wei\",\"doi\":\"10.4018/ijdwm.314585\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Fake news has brought significant challenges to the healthy development of social media. Although current fake news detection methods are advanced, many models directly utilize unselected user comments and do not consider the emotional connection between news content and user comments. The authors propose an emotion-driven explainable fake news detection model (EDI) to solve this problem. The model can select valuable user comments by using sentiment value, obtain the emotional correlation representation between news content and user comments by using collaborative annotation, and obtain the weighted representation of user comments by using the attention mechanism. Experimental results on Twitter and Weibo show that the detection model significantly outperforms the state-of-the-art models and provides reasonable interpretation.\",\"PeriodicalId\":54963,\"journal\":{\"name\":\"International Journal of Data Warehousing and Mining\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Data Warehousing and Mining\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.4018/ijdwm.314585\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, SOFTWARE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Data Warehousing and Mining","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.4018/ijdwm.314585","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
Fake news has brought significant challenges to the healthy development of social media. Although current fake news detection methods are advanced, many models directly utilize unselected user comments and do not consider the emotional connection between news content and user comments. The authors propose an emotion-driven explainable fake news detection model (EDI) to solve this problem. The model can select valuable user comments by using sentiment value, obtain the emotional correlation representation between news content and user comments by using collaborative annotation, and obtain the weighted representation of user comments by using the attention mechanism. Experimental results on Twitter and Weibo show that the detection model significantly outperforms the state-of-the-art models and provides reasonable interpretation.
期刊介绍:
The International Journal of Data Warehousing and Mining (IJDWM) disseminates the latest international research findings in the areas of data management and analyzation. IJDWM provides a forum for state-of-the-art developments and research, as well as current innovative activities focusing on the integration between the fields of data warehousing and data mining. Emphasizing applicability to real world problems, this journal meets the needs of both academic researchers and practicing IT professionals.The journal is devoted to the publications of high quality papers on theoretical developments and practical applications in data warehousing and data mining. Original research papers, state-of-the-art reviews, and technical notes are invited for publications. The journal accepts paper submission of any work relevant to data warehousing and data mining. Special attention will be given to papers focusing on mining of data from data warehouses; integration of databases, data warehousing, and data mining; and holistic approaches to mining and archiving