R. Ayop, Chee Wei Tan, Shahrin Md. Ayob, Lau Kwan Yiew, Ho Wai Shin
{"title":"光伏-热电联产系统配置的比较研究","authors":"R. Ayop, Chee Wei Tan, Shahrin Md. Ayob, Lau Kwan Yiew, Ho Wai Shin","doi":"10.11113/jurnalteknologi.v85.20222","DOIUrl":null,"url":null,"abstract":"Photovoltaic (PV) converts solar energy to electrical energy directly. During this process, the PV produce energy losses in the form of heat energy. To improve the system's efficiency, this heat energy is converted into electrical energy using the thermoelectric generator (TEG). The PV and TEG have a nonlinear current-voltage characteristic and it requires a power converter with maximum power point tracking (MPPT) to properly extract the energy. There are several configurations of power converters available for the PV-TEG cogeneration system (PTCS). Nonetheless, the literature that compares the performance of the configurations is unavailable. This paper compares 4 configurations for the PTCS, which include the separate boost full MPPT (SBFM), separate boost partial MPPT, series source boost MPPT, and PV boost MPPT with series TEG. The boost converter with perturb and observe MPPT method is used for all configurations to ensure a fair comparison. The results show that SBFM can efficiently extract the energy from both PV and TEG up to 98.5%. The other configurations can efficiently extract energy from the PV (more than 98.5%). However, the energy extracts from the TEG have a low efficiency down to 87%. Overall, the configuration chosen for the PTCS affects the efficiency of the system.","PeriodicalId":47541,"journal":{"name":"Jurnal Teknologi-Sciences & Engineering","volume":" ","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2023-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"COMPARATIVE STUDY OF CONFIGURATIONS FOR PHOTOVOLTAIC-THERMOELECTRIC GENERATOR COGENERATION SYSTEM\",\"authors\":\"R. Ayop, Chee Wei Tan, Shahrin Md. Ayob, Lau Kwan Yiew, Ho Wai Shin\",\"doi\":\"10.11113/jurnalteknologi.v85.20222\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Photovoltaic (PV) converts solar energy to electrical energy directly. During this process, the PV produce energy losses in the form of heat energy. To improve the system's efficiency, this heat energy is converted into electrical energy using the thermoelectric generator (TEG). The PV and TEG have a nonlinear current-voltage characteristic and it requires a power converter with maximum power point tracking (MPPT) to properly extract the energy. There are several configurations of power converters available for the PV-TEG cogeneration system (PTCS). Nonetheless, the literature that compares the performance of the configurations is unavailable. This paper compares 4 configurations for the PTCS, which include the separate boost full MPPT (SBFM), separate boost partial MPPT, series source boost MPPT, and PV boost MPPT with series TEG. The boost converter with perturb and observe MPPT method is used for all configurations to ensure a fair comparison. The results show that SBFM can efficiently extract the energy from both PV and TEG up to 98.5%. The other configurations can efficiently extract energy from the PV (more than 98.5%). However, the energy extracts from the TEG have a low efficiency down to 87%. Overall, the configuration chosen for the PTCS affects the efficiency of the system.\",\"PeriodicalId\":47541,\"journal\":{\"name\":\"Jurnal Teknologi-Sciences & Engineering\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2023-08-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Jurnal Teknologi-Sciences & Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.11113/jurnalteknologi.v85.20222\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jurnal Teknologi-Sciences & Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11113/jurnalteknologi.v85.20222","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
COMPARATIVE STUDY OF CONFIGURATIONS FOR PHOTOVOLTAIC-THERMOELECTRIC GENERATOR COGENERATION SYSTEM
Photovoltaic (PV) converts solar energy to electrical energy directly. During this process, the PV produce energy losses in the form of heat energy. To improve the system's efficiency, this heat energy is converted into electrical energy using the thermoelectric generator (TEG). The PV and TEG have a nonlinear current-voltage characteristic and it requires a power converter with maximum power point tracking (MPPT) to properly extract the energy. There are several configurations of power converters available for the PV-TEG cogeneration system (PTCS). Nonetheless, the literature that compares the performance of the configurations is unavailable. This paper compares 4 configurations for the PTCS, which include the separate boost full MPPT (SBFM), separate boost partial MPPT, series source boost MPPT, and PV boost MPPT with series TEG. The boost converter with perturb and observe MPPT method is used for all configurations to ensure a fair comparison. The results show that SBFM can efficiently extract the energy from both PV and TEG up to 98.5%. The other configurations can efficiently extract energy from the PV (more than 98.5%). However, the energy extracts from the TEG have a low efficiency down to 87%. Overall, the configuration chosen for the PTCS affects the efficiency of the system.