构造地球化学异常序贯高斯联合模拟预测隐伏矿床

IF 3.1 3区 地球科学 Q1 GEOCHEMISTRY & GEOPHYSICS Applied Geochemistry Pub Date : 2023-10-01 DOI:10.1016/j.apgeochem.2023.105768
Yue Liu , Qinglin Xia , Qiuming Cheng
{"title":"构造地球化学异常序贯高斯联合模拟预测隐伏矿床","authors":"Yue Liu ,&nbsp;Qinglin Xia ,&nbsp;Qiuming Cheng","doi":"10.1016/j.apgeochem.2023.105768","DOIUrl":null,"url":null,"abstract":"<div><p>Tectono-geochemical data measured from tectonites host a wealth of information that is closely related to the accumulation and dispersion of ore-forming materials, while structure system is the only pathway to connect the deep orebody with the surficial tectono-geochemical anomaly, and both have correspondence and consistency. Based on the geological precondition that structure system and ore-forming process are closely associated with each other, the study proposed a method of sequential Gaussian co-simulation of tectono-geochemical anomaly, which integrates the tectono-geochemical anomaly with the ore-controlling structure system to solve two basic geological prospecting problems that are closely associated with ore-forming space and ore-forming material migration. A case study for concealed Pb–Zn prospecting based on tectono-geochemical data in the Huangzhuguang ore cluster (China) was employed to examine the potential applications of the proposed method. Firstly, centered logratio transformation was employed to remove the closure effect of tectono-geochemical data and to make the data conform to an approximate normal distribution<span>. Secondly, sequential Gaussian co-simulation was applied to improve the simulation results of the tectono-geochemical anomaly by introducing the ore-controlling structure system. Thirdly, the probability distribution of tectono-geochemical anomalies was quantified by uncertainty modeling technique. The case study demonstrated that the proposed method can significantly improve the performance of the primary variable in predicting concealed ore deposits.</span></p></div>","PeriodicalId":8064,"journal":{"name":"Applied Geochemistry","volume":"157 ","pages":"Article 105768"},"PeriodicalIF":3.1000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sequential Gaussian co-simulation of tectono-geochemical anomaly for concealed ore deposit prediction\",\"authors\":\"Yue Liu ,&nbsp;Qinglin Xia ,&nbsp;Qiuming Cheng\",\"doi\":\"10.1016/j.apgeochem.2023.105768\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Tectono-geochemical data measured from tectonites host a wealth of information that is closely related to the accumulation and dispersion of ore-forming materials, while structure system is the only pathway to connect the deep orebody with the surficial tectono-geochemical anomaly, and both have correspondence and consistency. Based on the geological precondition that structure system and ore-forming process are closely associated with each other, the study proposed a method of sequential Gaussian co-simulation of tectono-geochemical anomaly, which integrates the tectono-geochemical anomaly with the ore-controlling structure system to solve two basic geological prospecting problems that are closely associated with ore-forming space and ore-forming material migration. A case study for concealed Pb–Zn prospecting based on tectono-geochemical data in the Huangzhuguang ore cluster (China) was employed to examine the potential applications of the proposed method. Firstly, centered logratio transformation was employed to remove the closure effect of tectono-geochemical data and to make the data conform to an approximate normal distribution<span>. Secondly, sequential Gaussian co-simulation was applied to improve the simulation results of the tectono-geochemical anomaly by introducing the ore-controlling structure system. Thirdly, the probability distribution of tectono-geochemical anomalies was quantified by uncertainty modeling technique. The case study demonstrated that the proposed method can significantly improve the performance of the primary variable in predicting concealed ore deposits.</span></p></div>\",\"PeriodicalId\":8064,\"journal\":{\"name\":\"Applied Geochemistry\",\"volume\":\"157 \",\"pages\":\"Article 105768\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2023-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Geochemistry\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0883292723002135\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Geochemistry","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0883292723002135","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

构造岩测得的构造地球化学数据承载着丰富的信息,这些信息与成矿物质的聚集和分散密切相关,而构造系统是连接深部矿体与地表构造地球化学异常的唯一途径,两者具有对应性和一致性。基于构造体系与成矿过程密切相关的地质前提,提出了构造地球化学异常与控矿构造体系相结合的构造地球化学异常序贯高斯联合模拟方法,解决了与成矿空间和成矿物质迁移密切相关的两个基本地质找矿问题。以黄竹光矿群构造地球化学资料找矿为例,探讨了该方法的应用前景。首先,采用中心定位变换去除构造地球化学数据的闭合效应,使构造地球化学数据服从近似正态分布;其次,通过引入控矿构造体系,应用序贯高斯联合模拟改进构造地球化学异常模拟结果;第三,利用不确定性建模技术量化构造地球化学异常的概率分布。实例研究表明,该方法能显著提高主变量预测隐伏矿床的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Sequential Gaussian co-simulation of tectono-geochemical anomaly for concealed ore deposit prediction

Tectono-geochemical data measured from tectonites host a wealth of information that is closely related to the accumulation and dispersion of ore-forming materials, while structure system is the only pathway to connect the deep orebody with the surficial tectono-geochemical anomaly, and both have correspondence and consistency. Based on the geological precondition that structure system and ore-forming process are closely associated with each other, the study proposed a method of sequential Gaussian co-simulation of tectono-geochemical anomaly, which integrates the tectono-geochemical anomaly with the ore-controlling structure system to solve two basic geological prospecting problems that are closely associated with ore-forming space and ore-forming material migration. A case study for concealed Pb–Zn prospecting based on tectono-geochemical data in the Huangzhuguang ore cluster (China) was employed to examine the potential applications of the proposed method. Firstly, centered logratio transformation was employed to remove the closure effect of tectono-geochemical data and to make the data conform to an approximate normal distribution. Secondly, sequential Gaussian co-simulation was applied to improve the simulation results of the tectono-geochemical anomaly by introducing the ore-controlling structure system. Thirdly, the probability distribution of tectono-geochemical anomalies was quantified by uncertainty modeling technique. The case study demonstrated that the proposed method can significantly improve the performance of the primary variable in predicting concealed ore deposits.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Applied Geochemistry
Applied Geochemistry 地学-地球化学与地球物理
CiteScore
6.10
自引率
8.80%
发文量
272
审稿时长
65 days
期刊介绍: Applied Geochemistry is an international journal devoted to publication of original research papers, rapid research communications and selected review papers in geochemistry and urban geochemistry which have some practical application to an aspect of human endeavour, such as the preservation of the environment, health, waste disposal and the search for resources. Papers on applications of inorganic, organic and isotope geochemistry and geochemical processes are therefore welcome provided they meet the main criterion. Spatial and temporal monitoring case studies are only of interest to our international readership if they present new ideas of broad application. Topics covered include: (1) Environmental geochemistry (including natural and anthropogenic aspects, and protection and remediation strategies); (2) Hydrogeochemistry (surface and groundwater); (3) Medical (urban) geochemistry; (4) The search for energy resources (in particular unconventional oil and gas or emerging metal resources); (5) Energy exploitation (in particular geothermal energy and CCS); (6) Upgrading of energy and mineral resources where there is a direct geochemical application; and (7) Waste disposal, including nuclear waste disposal.
期刊最新文献
Fluid geochemical constraints on the geological genesis of carbonate geothermal systems: A case study of Quzhuomu in southern Tibet, China Understanding water–rock interaction in crystalline shield fluids using calcium isotopes Rare earth element patterns in sediments from the Great Lakes basin Sulfate availability affect sulfate reduction pathways and methane consumption in freshwater wetland sediments Geochemical markers in the detection and identification of fossil fuels in waste material from an illegal landfill fire
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1