计数数据的负二项-新广义Lindley分布:性质及应用

IF 1.1 Q3 STATISTICS & PROBABILITY Pakistan Journal of Statistics and Operation Research Pub Date : 2022-03-04 DOI:10.18187/pjsor.v18i1.2988
S. Aryuyuen
{"title":"计数数据的负二项-新广义Lindley分布:性质及应用","authors":"S. Aryuyuen","doi":"10.18187/pjsor.v18i1.2988","DOIUrl":null,"url":null,"abstract":"In this paper, a new mixture distribution for count data, namely the negative binomial-new generalized Lindley (NB-NGL) distribution is proposed. The NB-NGL distribution has four parameters, and is a flexible alternative for analyzing count data, especially when there is over-dispersion in the data. The proposed distribution has sub-models such as the negative binomial-Lindley (NB-L), negative binomial-gamma (NB-G), and negative binomial-exponential (NB-E) distributions as the special cases. Some properties of the proposed distribution are derived, i.e., the moments and order statistics density function. The unknown parameters of the NB-NGL distribution are estimated by using the maximum likelihood estimation. The results of the simulation study show that the maximum likelihood estimators give the parameter estimates close to the parameter when the sample is large. Application of NB-NGL distribution is carry out on three samples of medical data, industry data, and insurance data. Based on the results, it is shown that the proposed distribution provides a better fit compared to the Poisson, negative binomial, and its sub-model for count data.","PeriodicalId":19973,"journal":{"name":"Pakistan Journal of Statistics and Operation Research","volume":" ","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2022-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"The Negative Binomial-New Generalized Lindley Distribution for Count Data: Properties and Application\",\"authors\":\"S. Aryuyuen\",\"doi\":\"10.18187/pjsor.v18i1.2988\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, a new mixture distribution for count data, namely the negative binomial-new generalized Lindley (NB-NGL) distribution is proposed. The NB-NGL distribution has four parameters, and is a flexible alternative for analyzing count data, especially when there is over-dispersion in the data. The proposed distribution has sub-models such as the negative binomial-Lindley (NB-L), negative binomial-gamma (NB-G), and negative binomial-exponential (NB-E) distributions as the special cases. Some properties of the proposed distribution are derived, i.e., the moments and order statistics density function. The unknown parameters of the NB-NGL distribution are estimated by using the maximum likelihood estimation. The results of the simulation study show that the maximum likelihood estimators give the parameter estimates close to the parameter when the sample is large. Application of NB-NGL distribution is carry out on three samples of medical data, industry data, and insurance data. Based on the results, it is shown that the proposed distribution provides a better fit compared to the Poisson, negative binomial, and its sub-model for count data.\",\"PeriodicalId\":19973,\"journal\":{\"name\":\"Pakistan Journal of Statistics and Operation Research\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2022-03-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Pakistan Journal of Statistics and Operation Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18187/pjsor.v18i1.2988\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pakistan Journal of Statistics and Operation Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18187/pjsor.v18i1.2988","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 3

摘要

本文提出了一种新的计数数据混合分布,即负二项-新广义Lindley (NB-NGL)分布。NB-NGL分布有4个参数,是分析计数数据的一种灵活选择,特别是在数据中存在过分散的情况下。该分布的子模型有负二项-林德利分布(NB-L)、负二项-伽马分布(NB-G)和负二项-指数分布(NB-E)等特殊情况。给出了该分布的一些性质,即矩量和阶统计密度函数。利用极大似然估计对NB-NGL分布的未知参数进行估计。仿真研究结果表明,当样本较大时,极大似然估计器给出的参数估计接近于参数。在医疗数据、行业数据和保险数据三个样本上应用NB-NGL分布。结果表明,与泊松、负二项及其子模型相比,所提出的分布对计数数据具有更好的拟合性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The Negative Binomial-New Generalized Lindley Distribution for Count Data: Properties and Application
In this paper, a new mixture distribution for count data, namely the negative binomial-new generalized Lindley (NB-NGL) distribution is proposed. The NB-NGL distribution has four parameters, and is a flexible alternative for analyzing count data, especially when there is over-dispersion in the data. The proposed distribution has sub-models such as the negative binomial-Lindley (NB-L), negative binomial-gamma (NB-G), and negative binomial-exponential (NB-E) distributions as the special cases. Some properties of the proposed distribution are derived, i.e., the moments and order statistics density function. The unknown parameters of the NB-NGL distribution are estimated by using the maximum likelihood estimation. The results of the simulation study show that the maximum likelihood estimators give the parameter estimates close to the parameter when the sample is large. Application of NB-NGL distribution is carry out on three samples of medical data, industry data, and insurance data. Based on the results, it is shown that the proposed distribution provides a better fit compared to the Poisson, negative binomial, and its sub-model for count data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.30
自引率
26.70%
发文量
53
期刊介绍: Pakistan Journal of Statistics and Operation Research. PJSOR is a peer-reviewed journal, published four times a year. PJSOR publishes refereed research articles and studies that describe the latest research and developments in the area of statistics, operation research and actuarial statistics.
期刊最新文献
Modeling Real-life Data Sets with a Novel G Family of Continuous Probability Distributions: Statistical Properties, and Copulas Schwarz’s Bayesian Information Criteria: A Model Selection Between Bayesian-SEM and Partial Least Squares-SEM Estimation based on Ranked Set Sampling for Farlie--Gumbel--Morgenstern Bivariate Weibull Distribution Parameters with an application to medical data Modeling Climate data using the Quartic Transmuted Weibull Distribution and Different Estimation Methods Multimodal Alpha Skew Normal Distribution: A New Distribution to Model Skewed Multimodal Observations
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1