Salvatore Baldino, R. Schiappa, M. Schwick, Roberto Vega
{"title":"painlev<s:1>方程和二维量子(超)引力的复兴Stokes数据","authors":"Salvatore Baldino, R. Schiappa, M. Schwick, Roberto Vega","doi":"10.4310/cntp.2023.v17.n2.a5","DOIUrl":null,"url":null,"abstract":"Resurgent-transseries solutions to Painleve equations may be recursively constructed out of these nonlinear differential-equations -- but require Stokes data to be globally defined over the complex plane. Stokes data explicitly construct connection-formulae which describe the nonlinear Stokes phenomena associated to these solutions, via implementation of Stokes transitions acting on the transseries. Nonlinear resurgent Stokes data lack, however, a first-principle computational approach, hence are hard to determine generically. In the Painleve I and Painleve II contexts, nonlinear Stokes data get further hindered as these equations are resonant, with non-trivial consequences for the interconnections between transseries sectors, bridge equations, and associated Stokes coefficients. In parallel to this, the Painleve I and Painleve II equations are string-equations for two-dimensional quantum (super) gravity and minimal string theories, where Stokes data have natural ZZ-brane interpretations. This work computes for the first time the complete, analytical, resurgent Stokes data for the first two Painleve equations, alongside their quantum gravity or minimal string incarnations. The method developed herein, dubbed\"closed-form asymptotics\", makes sole use of resurgent large-order asymptotics of transseries solutions -- alongside a careful analysis of the role resonance plays. Given its generality, it may be applicable to other distinct (nonlinear, resonant) problems. Results for analytical Stokes coefficients have natural structures, which are described, and extensive high-precision numerical tests corroborate all analytical predictions. Connection-formulae are explicitly constructed, with rather simple and compact final results encoding the full Stokes data, and further allowing for exact monodromy checks -- hence for an analytical proof of our results.","PeriodicalId":55616,"journal":{"name":"Communications in Number Theory and Physics","volume":"1 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2022-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Resurgent Stokes data for Painlevé equations and two-dimensional quantum (super) gravity\",\"authors\":\"Salvatore Baldino, R. Schiappa, M. Schwick, Roberto Vega\",\"doi\":\"10.4310/cntp.2023.v17.n2.a5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Resurgent-transseries solutions to Painleve equations may be recursively constructed out of these nonlinear differential-equations -- but require Stokes data to be globally defined over the complex plane. Stokes data explicitly construct connection-formulae which describe the nonlinear Stokes phenomena associated to these solutions, via implementation of Stokes transitions acting on the transseries. Nonlinear resurgent Stokes data lack, however, a first-principle computational approach, hence are hard to determine generically. In the Painleve I and Painleve II contexts, nonlinear Stokes data get further hindered as these equations are resonant, with non-trivial consequences for the interconnections between transseries sectors, bridge equations, and associated Stokes coefficients. In parallel to this, the Painleve I and Painleve II equations are string-equations for two-dimensional quantum (super) gravity and minimal string theories, where Stokes data have natural ZZ-brane interpretations. This work computes for the first time the complete, analytical, resurgent Stokes data for the first two Painleve equations, alongside their quantum gravity or minimal string incarnations. The method developed herein, dubbed\\\"closed-form asymptotics\\\", makes sole use of resurgent large-order asymptotics of transseries solutions -- alongside a careful analysis of the role resonance plays. Given its generality, it may be applicable to other distinct (nonlinear, resonant) problems. Results for analytical Stokes coefficients have natural structures, which are described, and extensive high-precision numerical tests corroborate all analytical predictions. Connection-formulae are explicitly constructed, with rather simple and compact final results encoding the full Stokes data, and further allowing for exact monodromy checks -- hence for an analytical proof of our results.\",\"PeriodicalId\":55616,\"journal\":{\"name\":\"Communications in Number Theory and Physics\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2022-03-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications in Number Theory and Physics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4310/cntp.2023.v17.n2.a5\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Number Theory and Physics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/cntp.2023.v17.n2.a5","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Resurgent Stokes data for Painlevé equations and two-dimensional quantum (super) gravity
Resurgent-transseries solutions to Painleve equations may be recursively constructed out of these nonlinear differential-equations -- but require Stokes data to be globally defined over the complex plane. Stokes data explicitly construct connection-formulae which describe the nonlinear Stokes phenomena associated to these solutions, via implementation of Stokes transitions acting on the transseries. Nonlinear resurgent Stokes data lack, however, a first-principle computational approach, hence are hard to determine generically. In the Painleve I and Painleve II contexts, nonlinear Stokes data get further hindered as these equations are resonant, with non-trivial consequences for the interconnections between transseries sectors, bridge equations, and associated Stokes coefficients. In parallel to this, the Painleve I and Painleve II equations are string-equations for two-dimensional quantum (super) gravity and minimal string theories, where Stokes data have natural ZZ-brane interpretations. This work computes for the first time the complete, analytical, resurgent Stokes data for the first two Painleve equations, alongside their quantum gravity or minimal string incarnations. The method developed herein, dubbed"closed-form asymptotics", makes sole use of resurgent large-order asymptotics of transseries solutions -- alongside a careful analysis of the role resonance plays. Given its generality, it may be applicable to other distinct (nonlinear, resonant) problems. Results for analytical Stokes coefficients have natural structures, which are described, and extensive high-precision numerical tests corroborate all analytical predictions. Connection-formulae are explicitly constructed, with rather simple and compact final results encoding the full Stokes data, and further allowing for exact monodromy checks -- hence for an analytical proof of our results.
期刊介绍:
Focused on the applications of number theory in the broadest sense to theoretical physics. Offers a forum for communication among researchers in number theory and theoretical physics by publishing primarily research, review, and expository articles regarding the relationship and dynamics between the two fields.