由于相对板块速度的变化,澳大利亚南部的短暂浸没

IF 2.2 3区 地球科学 Q2 GEOSCIENCES, MULTIDISCIPLINARY Terra Nova Pub Date : 2022-11-28 DOI:10.1111/ter.12637
Ömer F. Bodur, G. Houseman, P. Rey
{"title":"由于相对板块速度的变化,澳大利亚南部的短暂浸没","authors":"Ömer F. Bodur, G. Houseman, P. Rey","doi":"10.1111/ter.12637","DOIUrl":null,"url":null,"abstract":"Dynamic subsidence and uplift of plates are often explained by the vertical motion of density anomalies in the mantle. Such models predict surface vertical motion rates of less than 100 m Myr−1 at long‐wavelengths with a timespan of tens of Myr. However, during periods of relative sea‐level stability, some of the phases of vertical motion on stable portions of plates have occurred at rates greater than 100 m Myr−1 during episodes that may last only a few Myr. Here, we show that vertical surface motions, with rates greater than 100 m Myr−1 and durations less than a few Myr, can be explained by changes in basal shear stress caused by variation in horizontal motion of a viscous plate relative to the asthenosphere. We apply our physical model to the short‐lived mid‐Eocene immersion of the southern margin of Australia.","PeriodicalId":22260,"journal":{"name":"Terra Nova","volume":"35 1","pages":"134 - 140"},"PeriodicalIF":2.2000,"publicationDate":"2022-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Brief immersion of southern Australia by change in relative plate speed\",\"authors\":\"Ömer F. Bodur, G. Houseman, P. Rey\",\"doi\":\"10.1111/ter.12637\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Dynamic subsidence and uplift of plates are often explained by the vertical motion of density anomalies in the mantle. Such models predict surface vertical motion rates of less than 100 m Myr−1 at long‐wavelengths with a timespan of tens of Myr. However, during periods of relative sea‐level stability, some of the phases of vertical motion on stable portions of plates have occurred at rates greater than 100 m Myr−1 during episodes that may last only a few Myr. Here, we show that vertical surface motions, with rates greater than 100 m Myr−1 and durations less than a few Myr, can be explained by changes in basal shear stress caused by variation in horizontal motion of a viscous plate relative to the asthenosphere. We apply our physical model to the short‐lived mid‐Eocene immersion of the southern margin of Australia.\",\"PeriodicalId\":22260,\"journal\":{\"name\":\"Terra Nova\",\"volume\":\"35 1\",\"pages\":\"134 - 140\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2022-11-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Terra Nova\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1111/ter.12637\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"GEOSCIENCES, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Terra Nova","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1111/ter.12637","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

板块的动态沉降和隆升通常用地幔中密度异常的垂直运动来解释。这种模式预测地表垂直运动速率在长波长下小于100 m Myr−1,时间跨度为几十Myr。然而,在海平面相对稳定的时期,板块稳定部分的某些垂直运动阶段发生的速率大于100米迈r−1,而这些阶段可能只持续几个迈r。在这里,我们表明,垂直表面运动的速率大于100 m Myr−1,持续时间小于几个Myr,可以用相对于软流层的粘性板块的水平运动变化引起的基底剪切应力的变化来解释。我们将我们的物理模型应用于澳大利亚南缘短暂的中始新世浸没。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Brief immersion of southern Australia by change in relative plate speed
Dynamic subsidence and uplift of plates are often explained by the vertical motion of density anomalies in the mantle. Such models predict surface vertical motion rates of less than 100 m Myr−1 at long‐wavelengths with a timespan of tens of Myr. However, during periods of relative sea‐level stability, some of the phases of vertical motion on stable portions of plates have occurred at rates greater than 100 m Myr−1 during episodes that may last only a few Myr. Here, we show that vertical surface motions, with rates greater than 100 m Myr−1 and durations less than a few Myr, can be explained by changes in basal shear stress caused by variation in horizontal motion of a viscous plate relative to the asthenosphere. We apply our physical model to the short‐lived mid‐Eocene immersion of the southern margin of Australia.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Terra Nova
Terra Nova 地学-地球科学综合
CiteScore
4.80
自引率
8.30%
发文量
59
审稿时长
2.3 months
期刊介绍: Terra Nova publishes short, innovative and provocative papers of interest to a wide readership and covering the broadest spectrum of the Solid Earth and Planetary Sciences. Terra Nova encompasses geology, geophysics and geochemistry, and extends to the fluid envelopes (atmosphere, ocean, environment) whenever coupling with the Solid Earth is involved.
期刊最新文献
Constraining the Timing of the Closure of the Intra‐Pontide Ocean by U–Pb Dating of Syntectonic Calcite Lead Isotopes Constrain Precambrian Crustal Architecture, Thermal History and Lithospheric Foundering in Laurentia Apparent Joint Swarms Formed by the Crack‐Jump Process CO2‐Rich Xenoliths at Mt. Vulture Volcano (Southern Italy): New Constraints on the Volcano Plumbing System Elevated Tropical Sea Surface Temperatures During the Globally Warm Miocene Caused Heat Stress for Caribbean Coral Reefs
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1