利用凝集素印迹和质谱技术研究海胆神经再生的候选末端聚糖谱

IF 2.1 4区 生物学 Q2 BIOLOGY Biological Bulletin Pub Date : 2022-03-09 DOI:10.1086/718776
Ramiz Demir, Umut Şahar, Remziye Deveci
{"title":"利用凝集素印迹和质谱技术研究海胆神经再生的候选末端聚糖谱","authors":"Ramiz Demir, Umut Şahar, Remziye Deveci","doi":"10.1086/718776","DOIUrl":null,"url":null,"abstract":"Glycans are expressed as conjugates of glycoproteins, glycolipids, and proteoglycans. The huge diversity of glycans on glycoconjugates contributes to many biological processes, from glycan-based molecular recognition to developmental events, such as regeneration in the nervous system. Echinoderms, which have a close phylogenetic relationship with chordates, are an important group of marine invertebrates for body regeneration. Although many major roles of glycans on glycoconjugates are known, their role in the glycosylation profile of the nervous system in sea urchins is poorly understood. In this study, we aimed to determine the terminal glycan profile by lectin blotting and to quantify sialic acids by the capillary liquid chromatography electrospray ionization tandem mass spectrometry system in the nervous tissue of the sea urchin Paracentrotus lividus. We determined the N-acetyl-D-glucosamine, mannose, and sialic acids (mainly α2,3 linked) by lectin blotting and five types of sialic acids (N-glycolylneuraminic acid, N-acetylneuraminic acid, 9-O-acetyl-N-alycolylneuraminic acid, 5-N-acetyl-9-O-acetyl-N-acetylneuraminic acid, and di-O-acetylated-N-alycolylneuraminic acid) by capillary liquid chromatography electrospray ionization tandem mass spectrometry. This potential first description of the terminal glycan profile in the nervous system of the sea urchin is expected to help us understand its role in nervous system development and regeneration.","PeriodicalId":55376,"journal":{"name":"Biological Bulletin","volume":"242 1","pages":"118 - 126"},"PeriodicalIF":2.1000,"publicationDate":"2022-03-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Exploring the Candidate Terminal Glycan Profile in Neural Regeneration of the Sea Urchin Paracentrotus lividus, Using Lectin Blotting and Mass Spectrometry\",\"authors\":\"Ramiz Demir, Umut Şahar, Remziye Deveci\",\"doi\":\"10.1086/718776\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Glycans are expressed as conjugates of glycoproteins, glycolipids, and proteoglycans. The huge diversity of glycans on glycoconjugates contributes to many biological processes, from glycan-based molecular recognition to developmental events, such as regeneration in the nervous system. Echinoderms, which have a close phylogenetic relationship with chordates, are an important group of marine invertebrates for body regeneration. Although many major roles of glycans on glycoconjugates are known, their role in the glycosylation profile of the nervous system in sea urchins is poorly understood. In this study, we aimed to determine the terminal glycan profile by lectin blotting and to quantify sialic acids by the capillary liquid chromatography electrospray ionization tandem mass spectrometry system in the nervous tissue of the sea urchin Paracentrotus lividus. We determined the N-acetyl-D-glucosamine, mannose, and sialic acids (mainly α2,3 linked) by lectin blotting and five types of sialic acids (N-glycolylneuraminic acid, N-acetylneuraminic acid, 9-O-acetyl-N-alycolylneuraminic acid, 5-N-acetyl-9-O-acetyl-N-acetylneuraminic acid, and di-O-acetylated-N-alycolylneuraminic acid) by capillary liquid chromatography electrospray ionization tandem mass spectrometry. This potential first description of the terminal glycan profile in the nervous system of the sea urchin is expected to help us understand its role in nervous system development and regeneration.\",\"PeriodicalId\":55376,\"journal\":{\"name\":\"Biological Bulletin\",\"volume\":\"242 1\",\"pages\":\"118 - 126\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2022-03-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biological Bulletin\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1086/718776\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biological Bulletin","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1086/718776","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

聚糖表达为糖蛋白、糖脂和蛋白聚糖的缀合物。糖缀合物上聚糖的巨大多样性有助于许多生物过程,从基于聚糖的分子识别到发育事件,如神经系统的再生。棘皮动物是一种重要的海洋无脊椎动物,与脊索动物有着密切的系统发育关系。虽然聚糖在糖缀合物上的许多主要作用是已知的,但它们在海胆神经系统糖基化谱中的作用却知之甚少。本研究旨在通过凝集素印迹法测定海胆神经组织中末端聚糖谱,并通过毛细管液相色谱-电喷雾电离串联质谱法定量测定唾液酸。采用凝集素印迹法测定n -乙酰- d-葡萄糖胺、甘露糖和唾液酸(主要为α2,3链),采用毛细管液相色谱-电喷雾串联质谱法测定5种唾液酸(n -糖基神经氨酸、n -乙酰基神经氨酸、9- o -乙酰基- n -乙酰基神经氨酸、5- n -乙酰基-9- o -乙酰基- n -乙酰基神经氨酸和二- o -乙酰化- n -乙酰基神经氨酸)。这可能是海胆神经系统中末端聚糖谱的首次描述,有望帮助我们了解其在神经系统发育和再生中的作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Exploring the Candidate Terminal Glycan Profile in Neural Regeneration of the Sea Urchin Paracentrotus lividus, Using Lectin Blotting and Mass Spectrometry
Glycans are expressed as conjugates of glycoproteins, glycolipids, and proteoglycans. The huge diversity of glycans on glycoconjugates contributes to many biological processes, from glycan-based molecular recognition to developmental events, such as regeneration in the nervous system. Echinoderms, which have a close phylogenetic relationship with chordates, are an important group of marine invertebrates for body regeneration. Although many major roles of glycans on glycoconjugates are known, their role in the glycosylation profile of the nervous system in sea urchins is poorly understood. In this study, we aimed to determine the terminal glycan profile by lectin blotting and to quantify sialic acids by the capillary liquid chromatography electrospray ionization tandem mass spectrometry system in the nervous tissue of the sea urchin Paracentrotus lividus. We determined the N-acetyl-D-glucosamine, mannose, and sialic acids (mainly α2,3 linked) by lectin blotting and five types of sialic acids (N-glycolylneuraminic acid, N-acetylneuraminic acid, 9-O-acetyl-N-alycolylneuraminic acid, 5-N-acetyl-9-O-acetyl-N-acetylneuraminic acid, and di-O-acetylated-N-alycolylneuraminic acid) by capillary liquid chromatography electrospray ionization tandem mass spectrometry. This potential first description of the terminal glycan profile in the nervous system of the sea urchin is expected to help us understand its role in nervous system development and regeneration.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biological Bulletin
Biological Bulletin 生物-海洋与淡水生物学
CiteScore
3.30
自引率
6.20%
发文量
47
审稿时长
6-12 weeks
期刊介绍: The Biological Bulletin disseminates novel scientific results in broadly related fields of biology in keeping with more than 100 years of a tradition of excellence. The Bulletin publishes outstanding original research with an overarching goal of explaining how organisms develop, function, and evolve in their natural environments. To that end, the journal publishes papers in the fields of Neurobiology and Behavior, Physiology and Biomechanics, Ecology and Evolution, Development and Reproduction, Cell Biology, Symbiosis and Systematics. The Bulletin emphasizes basic research on marine model systems but includes articles of an interdisciplinary nature when appropriate.
期刊最新文献
Scott Ross Santos (1972-2024): A Force of Good in the Exploration of Ecology and Evolution. Seroprevalence of poliovirus antibodies in Nigeria: refining strategies to sustain the eradication effort. Differences of Sucker Formation Processes Depending on Benthic or Pelagic Posthatching Lifestyles in Two Octopus Species. Predators Induce Phenotypic Plasticity in Echinoderms across Life History Stages. A Novel Behavioral Display in Lymnaea Induced by Quercetin and Hypoxia.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1