Chenxu Su, Bijiao Wang, Yunhong Lv, Mingpeng Zhang, Da-lei Peng, B. Bate, Shuai Zhang
{"title":"使用无监督和有监督的协作机器学习模型改进滑坡易感性映射","authors":"Chenxu Su, Bijiao Wang, Yunhong Lv, Mingpeng Zhang, Da-lei Peng, B. Bate, Shuai Zhang","doi":"10.1080/17499518.2022.2088802","DOIUrl":null,"url":null,"abstract":"ABSTRACT Datasets containing recorded landslide and non-landslide samples can greatly influence the performance of machine learning (ML) models, which are commonly used in landslide susceptibility mapping (LSM). However, the non-landslide samples cannot be directly obtained. In this study, a pattern-based approach is proposed to improve the LSM process, constructing unsupervised machine learning (UML) – supervised machine learning (SML) collaborative models in which the non-landslide samples can be reasonably selected. Two UML models, the Gaussian mixture model (GMM) and K-means, are introduced to sample the non-landslide datasets with four sampling selections (abbreviated as A, B, C and D, respectively). Then non-landslide patterns recognised by the UML models are learned by the random forest (RF). A new sensitivity index, accuracy improvement ratio (AIR), is defined to evaluate the superiority of these sampling selections. Compared with the GMM-RF model, the K-means-RF model is more capable of recognising non-landslide patterns and providing sufficient and reliable non-landslide samples. The sampling selection A of the K-means-RF with an AIR value of 2.3 is regarded as the best selection. The results indicate that the UML-SML model based on the pattern-based approach offers an effective strategy to find the non-landslide samples and has a better solution to the LSM.","PeriodicalId":48524,"journal":{"name":"Georisk-Assessment and Management of Risk for Engineered Systems and Geohazards","volume":"17 1","pages":"387 - 405"},"PeriodicalIF":6.5000,"publicationDate":"2022-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Improved landslide susceptibility mapping using unsupervised and supervised collaborative machine learning models\",\"authors\":\"Chenxu Su, Bijiao Wang, Yunhong Lv, Mingpeng Zhang, Da-lei Peng, B. Bate, Shuai Zhang\",\"doi\":\"10.1080/17499518.2022.2088802\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT Datasets containing recorded landslide and non-landslide samples can greatly influence the performance of machine learning (ML) models, which are commonly used in landslide susceptibility mapping (LSM). However, the non-landslide samples cannot be directly obtained. In this study, a pattern-based approach is proposed to improve the LSM process, constructing unsupervised machine learning (UML) – supervised machine learning (SML) collaborative models in which the non-landslide samples can be reasonably selected. Two UML models, the Gaussian mixture model (GMM) and K-means, are introduced to sample the non-landslide datasets with four sampling selections (abbreviated as A, B, C and D, respectively). Then non-landslide patterns recognised by the UML models are learned by the random forest (RF). A new sensitivity index, accuracy improvement ratio (AIR), is defined to evaluate the superiority of these sampling selections. Compared with the GMM-RF model, the K-means-RF model is more capable of recognising non-landslide patterns and providing sufficient and reliable non-landslide samples. The sampling selection A of the K-means-RF with an AIR value of 2.3 is regarded as the best selection. The results indicate that the UML-SML model based on the pattern-based approach offers an effective strategy to find the non-landslide samples and has a better solution to the LSM.\",\"PeriodicalId\":48524,\"journal\":{\"name\":\"Georisk-Assessment and Management of Risk for Engineered Systems and Geohazards\",\"volume\":\"17 1\",\"pages\":\"387 - 405\"},\"PeriodicalIF\":6.5000,\"publicationDate\":\"2022-06-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Georisk-Assessment and Management of Risk for Engineered Systems and Geohazards\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1080/17499518.2022.2088802\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, GEOLOGICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Georisk-Assessment and Management of Risk for Engineered Systems and Geohazards","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/17499518.2022.2088802","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
Improved landslide susceptibility mapping using unsupervised and supervised collaborative machine learning models
ABSTRACT Datasets containing recorded landslide and non-landslide samples can greatly influence the performance of machine learning (ML) models, which are commonly used in landslide susceptibility mapping (LSM). However, the non-landslide samples cannot be directly obtained. In this study, a pattern-based approach is proposed to improve the LSM process, constructing unsupervised machine learning (UML) – supervised machine learning (SML) collaborative models in which the non-landslide samples can be reasonably selected. Two UML models, the Gaussian mixture model (GMM) and K-means, are introduced to sample the non-landslide datasets with four sampling selections (abbreviated as A, B, C and D, respectively). Then non-landslide patterns recognised by the UML models are learned by the random forest (RF). A new sensitivity index, accuracy improvement ratio (AIR), is defined to evaluate the superiority of these sampling selections. Compared with the GMM-RF model, the K-means-RF model is more capable of recognising non-landslide patterns and providing sufficient and reliable non-landslide samples. The sampling selection A of the K-means-RF with an AIR value of 2.3 is regarded as the best selection. The results indicate that the UML-SML model based on the pattern-based approach offers an effective strategy to find the non-landslide samples and has a better solution to the LSM.
期刊介绍:
Georisk covers many diversified but interlinked areas of active research and practice, such as geohazards (earthquakes, landslides, avalanches, rockfalls, tsunamis, etc.), safety of engineered systems (dams, buildings, offshore structures, lifelines, etc.), environmental risk, seismic risk, reliability-based design and code calibration, geostatistics, decision analyses, structural reliability, maintenance and life cycle performance, risk and vulnerability, hazard mapping, loss assessment (economic, social, environmental, etc.), GIS databases, remote sensing, and many other related disciplines. The underlying theme is that uncertainties associated with geomaterials (soils, rocks), geologic processes, and possible subsequent treatments, are usually large and complex and these uncertainties play an indispensable role in the risk assessment and management of engineered and natural systems. Significant theoretical and practical challenges remain on quantifying these uncertainties and developing defensible risk management methodologies that are acceptable to decision makers and stakeholders. Many opportunities to leverage on the rapid advancement in Bayesian analysis, machine learning, artificial intelligence, and other data-driven methods also exist, which can greatly enhance our decision-making abilities. The basic goal of this international peer-reviewed journal is to provide a multi-disciplinary scientific forum for cross fertilization of ideas between interested parties working on various aspects of georisk to advance the state-of-the-art and the state-of-the-practice.