{"title":"LN2内冷却对石英纤维聚酰亚胺复合材料铣削孔出口缺陷的抑制行为","authors":"Fengbiao Wang, Mathew Kuttolamadom","doi":"10.1080/10910344.2023.2194968","DOIUrl":null,"url":null,"abstract":"Abstract The helical milling hole process of quartz fiber reinforced polyimide composites (QFRP) aimed to remove high-strength fiber and low-strength resin through thermodynamic interaction. But the defects, especially delamination at hole outlet, were difficult inhabited because of heterogeneous and anisotropic of composite. A mechanics model of milling hole force of QFRP was established by considering the shearing force of single fiber and temperature. A liquid nitrogen (LN2) inner-cooling machining equipment was employed for cryogenic milling hole testes. Compared with the conventional dry milling hole, the processed composite surface morphologies, cutting temperature, and milling force were investigated at hole outlet in detail. The study results show the predict values of the established model are compared and verified through the experimental measurement. And the cryogenic coolant processes can improve the composite mechanics properties, milling forces, and cutting heat. The composite can be completely chip breaking in cryogenic cooling, and the burr and delamination are effectively inhabited at hole outlet. Meanwhile, the rapid decline of cutting force and lower interlamination bonding force problems can be solved by the cryogenic cooling cutting. And the fiber avoidance can be improved through the increased tangential force, and the fiber can be efficiency chip breaking under the bigger tangential force. In addition, LN2 cooling can inhabit the cutting high temperature and increase the bonding force, the delamination defect of composite can be adequately improved in cryogenic.","PeriodicalId":51109,"journal":{"name":"Machining Science and Technology","volume":null,"pages":null},"PeriodicalIF":2.7000,"publicationDate":"2023-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Inhibition behavior of milling hole outlet defects inhibition on quartz fiber polyimide composite through LN2 inner cooling\",\"authors\":\"Fengbiao Wang, Mathew Kuttolamadom\",\"doi\":\"10.1080/10910344.2023.2194968\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The helical milling hole process of quartz fiber reinforced polyimide composites (QFRP) aimed to remove high-strength fiber and low-strength resin through thermodynamic interaction. But the defects, especially delamination at hole outlet, were difficult inhabited because of heterogeneous and anisotropic of composite. A mechanics model of milling hole force of QFRP was established by considering the shearing force of single fiber and temperature. A liquid nitrogen (LN2) inner-cooling machining equipment was employed for cryogenic milling hole testes. Compared with the conventional dry milling hole, the processed composite surface morphologies, cutting temperature, and milling force were investigated at hole outlet in detail. The study results show the predict values of the established model are compared and verified through the experimental measurement. And the cryogenic coolant processes can improve the composite mechanics properties, milling forces, and cutting heat. The composite can be completely chip breaking in cryogenic cooling, and the burr and delamination are effectively inhabited at hole outlet. Meanwhile, the rapid decline of cutting force and lower interlamination bonding force problems can be solved by the cryogenic cooling cutting. And the fiber avoidance can be improved through the increased tangential force, and the fiber can be efficiency chip breaking under the bigger tangential force. In addition, LN2 cooling can inhabit the cutting high temperature and increase the bonding force, the delamination defect of composite can be adequately improved in cryogenic.\",\"PeriodicalId\":51109,\"journal\":{\"name\":\"Machining Science and Technology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2023-03-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Machining Science and Technology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1080/10910344.2023.2194968\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MANUFACTURING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Machining Science and Technology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/10910344.2023.2194968","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
Inhibition behavior of milling hole outlet defects inhibition on quartz fiber polyimide composite through LN2 inner cooling
Abstract The helical milling hole process of quartz fiber reinforced polyimide composites (QFRP) aimed to remove high-strength fiber and low-strength resin through thermodynamic interaction. But the defects, especially delamination at hole outlet, were difficult inhabited because of heterogeneous and anisotropic of composite. A mechanics model of milling hole force of QFRP was established by considering the shearing force of single fiber and temperature. A liquid nitrogen (LN2) inner-cooling machining equipment was employed for cryogenic milling hole testes. Compared with the conventional dry milling hole, the processed composite surface morphologies, cutting temperature, and milling force were investigated at hole outlet in detail. The study results show the predict values of the established model are compared and verified through the experimental measurement. And the cryogenic coolant processes can improve the composite mechanics properties, milling forces, and cutting heat. The composite can be completely chip breaking in cryogenic cooling, and the burr and delamination are effectively inhabited at hole outlet. Meanwhile, the rapid decline of cutting force and lower interlamination bonding force problems can be solved by the cryogenic cooling cutting. And the fiber avoidance can be improved through the increased tangential force, and the fiber can be efficiency chip breaking under the bigger tangential force. In addition, LN2 cooling can inhabit the cutting high temperature and increase the bonding force, the delamination defect of composite can be adequately improved in cryogenic.
期刊介绍:
Machining Science and Technology publishes original scientific and technical papers and review articles on topics related to traditional and nontraditional machining processes performed on all materials—metals and advanced alloys, polymers, ceramics, composites, and biomaterials.
Topics covered include:
-machining performance of all materials, including lightweight materials-
coated and special cutting tools: design and machining performance evaluation-
predictive models for machining performance and optimization, including machining dynamics-
measurement and analysis of machined surfaces-
sustainable machining: dry, near-dry, or Minimum Quantity Lubrication (MQL) and cryogenic machining processes
precision and micro/nano machining-
design and implementation of in-process sensors for monitoring and control of machining performance-
surface integrity in machining processes, including detection and characterization of machining damage-
new and advanced abrasive machining processes: design and performance analysis-
cutting fluids and special coolants/lubricants-
nontraditional and hybrid machining processes, including EDM, ECM, laser and plasma-assisted machining, waterjet and abrasive waterjet machining