融合层次深度网络的高光谱图像分类联合稀疏表示

王军浩, 闫德勤, 刘德山, 闫汇聪
{"title":"融合层次深度网络的高光谱图像分类联合稀疏表示","authors":"王军浩, 闫德勤, 刘德山, 闫汇聪","doi":"10.16451/J.CNKI.ISSN1003-6059.202004003","DOIUrl":null,"url":null,"abstract":"In joint sparse representation of hyperspectral image classification,once the local window of each pixel includes samples from different categories,the dictionary atoms and testing samples are easily affected by samples from different categories with same spectrum and the classification performance is seriously decreased.According to the characteristics of hyperspectral image,an algorithm of joint sparse representation fusing hierarchical deep network is proposed.Discriminative spectral information and spatial information are extracted by alternating spectral and spatial feature learning operations,and then a dictionary with spatial spectral features is constructed for joint sparse representation.In the classification process,the correlation coefficient between the dictionary and the testing samples is combined with classification error to make decisions.Experiments on two hyperspectral remote sensing datasets verify the effectiveness of the proposed algorithm.","PeriodicalId":34917,"journal":{"name":"模式识别与人工智能","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Joint Sparse Representation Fusing Hierarchical Deep Network of Hyperspectral Image Classification\",\"authors\":\"王军浩, 闫德勤, 刘德山, 闫汇聪\",\"doi\":\"10.16451/J.CNKI.ISSN1003-6059.202004003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In joint sparse representation of hyperspectral image classification,once the local window of each pixel includes samples from different categories,the dictionary atoms and testing samples are easily affected by samples from different categories with same spectrum and the classification performance is seriously decreased.According to the characteristics of hyperspectral image,an algorithm of joint sparse representation fusing hierarchical deep network is proposed.Discriminative spectral information and spatial information are extracted by alternating spectral and spatial feature learning operations,and then a dictionary with spatial spectral features is constructed for joint sparse representation.In the classification process,the correlation coefficient between the dictionary and the testing samples is combined with classification error to make decisions.Experiments on two hyperspectral remote sensing datasets verify the effectiveness of the proposed algorithm.\",\"PeriodicalId\":34917,\"journal\":{\"name\":\"模式识别与人工智能\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"模式识别与人工智能\",\"FirstCategoryId\":\"1093\",\"ListUrlMain\":\"https://doi.org/10.16451/J.CNKI.ISSN1003-6059.202004003\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Computer Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"模式识别与人工智能","FirstCategoryId":"1093","ListUrlMain":"https://doi.org/10.16451/J.CNKI.ISSN1003-6059.202004003","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 0

摘要

在高光谱图像分类的联合稀疏表示中,一旦每个像素的局部窗口包含不同类别的样本,字典原子和测试样本很容易受到相同光谱的不同类别样本的影响,分类性能严重下降。根据高光谱图像的特点,提出了一种融合层次深度网络的联合稀疏表示算法。通过交替的光谱和空间特征学习操作提取判别光谱信息和空间信息,然后构建具有空间光谱特征的字典进行联合稀疏表示。在分类过程中,字典和测试样本之间的相关系数与分类误差相结合来做出决策。在两个高光谱遥感数据集上的实验验证了该算法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Joint Sparse Representation Fusing Hierarchical Deep Network of Hyperspectral Image Classification
In joint sparse representation of hyperspectral image classification,once the local window of each pixel includes samples from different categories,the dictionary atoms and testing samples are easily affected by samples from different categories with same spectrum and the classification performance is seriously decreased.According to the characteristics of hyperspectral image,an algorithm of joint sparse representation fusing hierarchical deep network is proposed.Discriminative spectral information and spatial information are extracted by alternating spectral and spatial feature learning operations,and then a dictionary with spatial spectral features is constructed for joint sparse representation.In the classification process,the correlation coefficient between the dictionary and the testing samples is combined with classification error to make decisions.Experiments on two hyperspectral remote sensing datasets verify the effectiveness of the proposed algorithm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
模式识别与人工智能
模式识别与人工智能 Computer Science-Artificial Intelligence
CiteScore
1.60
自引率
0.00%
发文量
3316
期刊介绍:
期刊最新文献
Pattern Recognition and Artificial Intelligence: 5th Mediterranean Conference, MedPRAI 2021, Istanbul, Turkey, December 17–18, 2021, Proceedings Pattern Recognition and Artificial Intelligence: Third International Conference, ICPRAI 2022, Paris, France, June 1–3, 2022, Proceedings, Part I Pattern Recognition and Artificial Intelligence: Third International Conference, ICPRAI 2022, Paris, France, June 1–3, 2022, Proceedings, Part II Conditional Graph Pattern Matching with a Basic Static Analysis Ensemble Classification Using Entropy-Based Features for MRI Tissue Segmentation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1