{"title":"CTL自增殖病毒动力学模型的全局性质","authors":"Cuicui Jiang, H. Kong, Guohong Zhang, Kaifa Wang","doi":"10.5206/MASE/13822","DOIUrl":null,"url":null,"abstract":"A viral infection model with self-proliferation of cytotoxic T lymphocytes (CTLs) is proposed and its global dynamics is obtained. When the per capita self-proliferation rate of CTLs is sufficient large, an infection-free but immunity-activated equilibrium always exists and is globally asymptotically stable if the basic reproduction number of virus is less than a threshold value, which means that the immune effect still exists though virus be eliminated. Qualitative numerical simulations further indicate that the increase of per capita self-proliferation rate may lead to more severe infection outcome, which may provide insight into the failure of immune therapy.","PeriodicalId":93797,"journal":{"name":"Mathematics in applied sciences and engineering","volume":" ","pages":""},"PeriodicalIF":0.4000,"publicationDate":"2021-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Global properties of a virus dynamics model with self-proliferation of CTLs\",\"authors\":\"Cuicui Jiang, H. Kong, Guohong Zhang, Kaifa Wang\",\"doi\":\"10.5206/MASE/13822\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A viral infection model with self-proliferation of cytotoxic T lymphocytes (CTLs) is proposed and its global dynamics is obtained. When the per capita self-proliferation rate of CTLs is sufficient large, an infection-free but immunity-activated equilibrium always exists and is globally asymptotically stable if the basic reproduction number of virus is less than a threshold value, which means that the immune effect still exists though virus be eliminated. Qualitative numerical simulations further indicate that the increase of per capita self-proliferation rate may lead to more severe infection outcome, which may provide insight into the failure of immune therapy.\",\"PeriodicalId\":93797,\"journal\":{\"name\":\"Mathematics in applied sciences and engineering\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2021-05-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematics in applied sciences and engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5206/MASE/13822\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematics in applied sciences and engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5206/MASE/13822","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
Global properties of a virus dynamics model with self-proliferation of CTLs
A viral infection model with self-proliferation of cytotoxic T lymphocytes (CTLs) is proposed and its global dynamics is obtained. When the per capita self-proliferation rate of CTLs is sufficient large, an infection-free but immunity-activated equilibrium always exists and is globally asymptotically stable if the basic reproduction number of virus is less than a threshold value, which means that the immune effect still exists though virus be eliminated. Qualitative numerical simulations further indicate that the increase of per capita self-proliferation rate may lead to more severe infection outcome, which may provide insight into the failure of immune therapy.