CTL自增殖病毒动力学模型的全局性质

IF 0.4 Q4 MATHEMATICS, APPLIED Mathematics in applied sciences and engineering Pub Date : 2021-05-24 DOI:10.5206/MASE/13822
Cuicui Jiang, H. Kong, Guohong Zhang, Kaifa Wang
{"title":"CTL自增殖病毒动力学模型的全局性质","authors":"Cuicui Jiang, H. Kong, Guohong Zhang, Kaifa Wang","doi":"10.5206/MASE/13822","DOIUrl":null,"url":null,"abstract":"A viral infection model with self-proliferation of cytotoxic T lymphocytes (CTLs) is proposed and its global dynamics is obtained. When the per capita self-proliferation rate of CTLs is sufficient large, an infection-free but immunity-activated equilibrium always exists and is globally asymptotically stable if the basic reproduction number of virus is less than a threshold value, which means that the immune effect still exists though virus be eliminated. Qualitative numerical simulations further indicate that the increase of per capita self-proliferation rate may lead to more severe infection outcome, which may provide insight into the failure of immune therapy.","PeriodicalId":93797,"journal":{"name":"Mathematics in applied sciences and engineering","volume":" ","pages":""},"PeriodicalIF":0.4000,"publicationDate":"2021-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Global properties of a virus dynamics model with self-proliferation of CTLs\",\"authors\":\"Cuicui Jiang, H. Kong, Guohong Zhang, Kaifa Wang\",\"doi\":\"10.5206/MASE/13822\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A viral infection model with self-proliferation of cytotoxic T lymphocytes (CTLs) is proposed and its global dynamics is obtained. When the per capita self-proliferation rate of CTLs is sufficient large, an infection-free but immunity-activated equilibrium always exists and is globally asymptotically stable if the basic reproduction number of virus is less than a threshold value, which means that the immune effect still exists though virus be eliminated. Qualitative numerical simulations further indicate that the increase of per capita self-proliferation rate may lead to more severe infection outcome, which may provide insight into the failure of immune therapy.\",\"PeriodicalId\":93797,\"journal\":{\"name\":\"Mathematics in applied sciences and engineering\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2021-05-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematics in applied sciences and engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5206/MASE/13822\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematics in applied sciences and engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5206/MASE/13822","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 2

摘要

提出了一种具有细胞毒性T淋巴细胞自增殖的病毒感染模型,并获得了其全局动力学。当CTL的人均自增殖率足够大时,如果病毒的基本繁殖数小于阈值,则无感染但免疫激活的平衡总是存在,并且是全局渐近稳定的,这意味着即使病毒被消灭,免疫效果仍然存在。定性数值模拟进一步表明,人均自增殖率的增加可能导致更严重的感染结果,这可能为免疫治疗的失败提供线索。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Global properties of a virus dynamics model with self-proliferation of CTLs
A viral infection model with self-proliferation of cytotoxic T lymphocytes (CTLs) is proposed and its global dynamics is obtained. When the per capita self-proliferation rate of CTLs is sufficient large, an infection-free but immunity-activated equilibrium always exists and is globally asymptotically stable if the basic reproduction number of virus is less than a threshold value, which means that the immune effect still exists though virus be eliminated. Qualitative numerical simulations further indicate that the increase of per capita self-proliferation rate may lead to more severe infection outcome, which may provide insight into the failure of immune therapy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.40
自引率
0.00%
发文量
0
审稿时长
21 weeks
期刊最新文献
Solution of fractional modified Kawahara equation: a semi-analytic approach Recovery of an initial temperature of a one-dimensional body from finite time-observations Multiscale modeling approach to assess the impact of antibiotic treatment for COVID-19 on MRSA transmission and alternative immunotherapy treatment options The minimal invasion speed of two competing species in homogeneous environment Assessing the impact of host predation with Holling II response on the transmission of Chagas disease
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1