朝向在工业复杂几何形状中使用LES。第二部分:通过使用线性化的隐式时间推进来减少解决问题的时间

IF 1.5 4区 工程技术 Q3 MECHANICS Journal of Turbulence Pub Date : 2023-06-19 DOI:10.1080/14685248.2023.2225139
T. Berthelon, Guillaume Sahut, J. Leparoux, G. Balarac, G. Lartigue, Manuel Bernard, V. Moureau, O. Métais
{"title":"朝向在工业复杂几何形状中使用LES。第二部分:通过使用线性化的隐式时间推进来减少解决问题的时间","authors":"T. Berthelon, Guillaume Sahut, J. Leparoux, G. Balarac, G. Lartigue, Manuel Bernard, V. Moureau, O. Métais","doi":"10.1080/14685248.2023.2225139","DOIUrl":null,"url":null,"abstract":"The strong increase in computational power observed during the last few years has allowed to use Large Eddy Simulation (LES) for industrial configurations. Nevertheless, the time-to-solution is still too large for a daily use in the design phases. The objective of this work is to develop a new time integration method to reduce the time-to-solution of LES of incompressible flows by allowing the use of larger time step. The projection method, probably the most commonly used method in the context of LES of incompressible flow, is generally applied using explicit time advancement which constrains the time-step value for stability reasons (CFL and Fourier constraints). The time step can then be small with respect to the physical characteristic times of the studied flow. In this case, an implicit time advancement method, which is unconditionally stable, can be used. However, this leads to non-linear resolution of momentum equation which can strongly increase time-to-solution because of non-linear iterations inside a physical iteration. To relax the stability constraints while minimising the computational cost of an iteration, a linearised implicit time advancement based on Backward Differentiation Formula (BDF) scheme is proposed in this work. The linearisation is performed using an extrapolated velocity field based on the previous fields. This time integration is first evaluated on a turbulent pipe test case. It is observed a time-to-solution up to five times lower than the explicit time integration while keeping the same accuracy in terms of mean and fluctuating velocity fields. To incorporate this new time advancement method in the automatic mesh convergence developed in Part I, a time-step control method based on the local truncation error is used. The resulting automatic time-step and mesh procedure is evaluated on a turbulent round jet case and on PRECCINSTA configuration, a swirl burner which is a representative case of an industrial aeronautical injection system. This new procedure leads to a time-to-solution up to three times lower than the previous procedure, presented in Part I.","PeriodicalId":49967,"journal":{"name":"Journal of Turbulence","volume":null,"pages":null},"PeriodicalIF":1.5000,"publicationDate":"2023-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Toward the use of LES for industrial complex geometries. Part II: Reduce the time-to-solution by using a linearised implicit time advancement\",\"authors\":\"T. Berthelon, Guillaume Sahut, J. Leparoux, G. Balarac, G. Lartigue, Manuel Bernard, V. Moureau, O. Métais\",\"doi\":\"10.1080/14685248.2023.2225139\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The strong increase in computational power observed during the last few years has allowed to use Large Eddy Simulation (LES) for industrial configurations. Nevertheless, the time-to-solution is still too large for a daily use in the design phases. The objective of this work is to develop a new time integration method to reduce the time-to-solution of LES of incompressible flows by allowing the use of larger time step. The projection method, probably the most commonly used method in the context of LES of incompressible flow, is generally applied using explicit time advancement which constrains the time-step value for stability reasons (CFL and Fourier constraints). The time step can then be small with respect to the physical characteristic times of the studied flow. In this case, an implicit time advancement method, which is unconditionally stable, can be used. However, this leads to non-linear resolution of momentum equation which can strongly increase time-to-solution because of non-linear iterations inside a physical iteration. To relax the stability constraints while minimising the computational cost of an iteration, a linearised implicit time advancement based on Backward Differentiation Formula (BDF) scheme is proposed in this work. The linearisation is performed using an extrapolated velocity field based on the previous fields. This time integration is first evaluated on a turbulent pipe test case. It is observed a time-to-solution up to five times lower than the explicit time integration while keeping the same accuracy in terms of mean and fluctuating velocity fields. To incorporate this new time advancement method in the automatic mesh convergence developed in Part I, a time-step control method based on the local truncation error is used. The resulting automatic time-step and mesh procedure is evaluated on a turbulent round jet case and on PRECCINSTA configuration, a swirl burner which is a representative case of an industrial aeronautical injection system. This new procedure leads to a time-to-solution up to three times lower than the previous procedure, presented in Part I.\",\"PeriodicalId\":49967,\"journal\":{\"name\":\"Journal of Turbulence\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2023-06-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Turbulence\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1080/14685248.2023.2225139\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Turbulence","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/14685248.2023.2225139","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0

摘要

在过去几年中观察到的计算能力的强劲增长使大涡模拟(LES)能够用于工业配置。然而,对于设计阶段的日常使用来说,解决问题的时间仍然太长。这项工作的目的是开发一种新的时间积分方法,通过允许使用更大的时间步长来减少不可压缩流LES的求解时间。投影法可能是不可压缩流LES中最常用的方法,通常使用显式时间推进来应用,该显式时间提前出于稳定性原因(CFL和傅立叶约束)限制时间步长值。然后,相对于所研究的流的物理特征时间,时间步长可以很小。在这种情况下,可以使用无条件稳定的隐式时间推进方法。然而,这导致动量方程的非线性求解,由于物理迭代中的非线性迭代,这会大大增加求解时间。为了在最小化迭代计算成本的同时放松稳定性约束,本文提出了一种基于后向微分公式(BDF)的线性隐式时间推进方案。线性化是使用基于先前场的外推速度场来执行的。这种时间积分首先在湍流管道测试案例中进行评估。观察到,在平均速度场和波动速度场方面保持相同精度的同时,求解时间比显式时间积分低五倍。为了将这种新的时间推进方法纳入第一部分开发的自动网格收敛中,使用了一种基于局部截断误差的时间步长控制方法。所产生的自动时间步长和网格程序在湍流圆形射流情况和PRECINSTA配置(作为工业航空喷射系统的代表性情况的旋流燃烧器)上进行了评估。这一新程序的解决时间比第一部分中介绍的前一程序低三倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Toward the use of LES for industrial complex geometries. Part II: Reduce the time-to-solution by using a linearised implicit time advancement
The strong increase in computational power observed during the last few years has allowed to use Large Eddy Simulation (LES) for industrial configurations. Nevertheless, the time-to-solution is still too large for a daily use in the design phases. The objective of this work is to develop a new time integration method to reduce the time-to-solution of LES of incompressible flows by allowing the use of larger time step. The projection method, probably the most commonly used method in the context of LES of incompressible flow, is generally applied using explicit time advancement which constrains the time-step value for stability reasons (CFL and Fourier constraints). The time step can then be small with respect to the physical characteristic times of the studied flow. In this case, an implicit time advancement method, which is unconditionally stable, can be used. However, this leads to non-linear resolution of momentum equation which can strongly increase time-to-solution because of non-linear iterations inside a physical iteration. To relax the stability constraints while minimising the computational cost of an iteration, a linearised implicit time advancement based on Backward Differentiation Formula (BDF) scheme is proposed in this work. The linearisation is performed using an extrapolated velocity field based on the previous fields. This time integration is first evaluated on a turbulent pipe test case. It is observed a time-to-solution up to five times lower than the explicit time integration while keeping the same accuracy in terms of mean and fluctuating velocity fields. To incorporate this new time advancement method in the automatic mesh convergence developed in Part I, a time-step control method based on the local truncation error is used. The resulting automatic time-step and mesh procedure is evaluated on a turbulent round jet case and on PRECCINSTA configuration, a swirl burner which is a representative case of an industrial aeronautical injection system. This new procedure leads to a time-to-solution up to three times lower than the previous procedure, presented in Part I.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Turbulence
Journal of Turbulence 物理-力学
CiteScore
3.90
自引率
5.30%
发文量
23
审稿时长
6-12 weeks
期刊介绍: Turbulence is a physical phenomenon occurring in most fluid flows, and is a major research topic at the cutting edge of science and technology. Journal of Turbulence ( JoT) is a digital forum for disseminating new theoretical, numerical and experimental knowledge aimed at understanding, predicting and controlling fluid turbulence. JoT provides a common venue for communicating advances of fundamental and applied character across the many disciplines in which turbulence plays a vital role. Examples include turbulence arising in engineering fluid dynamics (aerodynamics and hydrodynamics, particulate and multi-phase flows, acoustics, hydraulics, combustion, aeroelasticity, transitional flows, turbo-machinery, heat transfer), geophysical fluid dynamics (environmental flows, oceanography, meteorology), in physics (magnetohydrodynamics and fusion, astrophysics, cryogenic and quantum fluids), and mathematics (turbulence from PDE’s, model systems). The multimedia capabilities offered by this electronic journal (including free colour images and video movies), provide a unique opportunity for disseminating turbulence research in visually impressive ways.
期刊最新文献
A comparative study of bandpass-filter-based multi-scale methods for turbulence energy cascade On the physical structure, modelling and computation-based prediction of two-dimensional, smooth-wall turbulent boundary layers subjected to streamwise pressure gradients Large-eddy simulation of shock train in convergent-divergent nozzles with isothermal walls Uniform momentum zones in turbulent channel flow Transient energy transfer and cascade analysis for stratified turbulent channel flows
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1