{"title":"辛羟肟酸在独居石表面吸附的基础研究","authors":"Wencai Zhang, Rick Honaker","doi":"10.1016/j.minpro.2017.05.006","DOIUrl":null,"url":null,"abstract":"<div><p><span>The adsorption mechanism of octanohydroxamic acid (OHA) on monazite<span><span> was studied using kinetic, isotherm, and thermodynamic adsorption tests as well as FTIR, titration, and micro-flotation experiments. The adsorption mechanism was described as a chemisorption/surface precipitation process. At low OHA concentrations, adsorption occurred by </span>chemisorption as a result of the reaction between surface active sites and OHA molecules. With an increase in concentration and interaction time, surface precipitation occurred. For chemisorption, adsorption was an exothermic and entropy driven process and maximum adsorption was achieved at pH</span></span> <!-->9.0 due to more active sites. In an acidic environment, such as pH<!--> <span>3.0, adsorption was achieved via chemisorption and hydrophobic bonding. However, a strong basic and higher temperature environment contributes to surface precipitation of basic rare earth hydroxamate. FTIR tests showed the movement of </span><img>CH<sub>2</sub> band position from 2924<!--> <!-->cm<sup>−<!--> <!-->1</sup> to 2920<!--> <!-->cm<sup>−<!--> <!-->1</sup> with increases in pH values from 3.0 to 6.0, 9.0, and 11.0, which corresponds to the status of chemisorbed and surface precipitated OHA, respectively.</p></div>","PeriodicalId":14022,"journal":{"name":"International Journal of Mineral Processing","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2017-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.minpro.2017.05.006","citationCount":"21","resultStr":"{\"title\":\"A fundamental study of octanohydroxamic acid adsorption on monazite surfaces\",\"authors\":\"Wencai Zhang, Rick Honaker\",\"doi\":\"10.1016/j.minpro.2017.05.006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span>The adsorption mechanism of octanohydroxamic acid (OHA) on monazite<span><span> was studied using kinetic, isotherm, and thermodynamic adsorption tests as well as FTIR, titration, and micro-flotation experiments. The adsorption mechanism was described as a chemisorption/surface precipitation process. At low OHA concentrations, adsorption occurred by </span>chemisorption as a result of the reaction between surface active sites and OHA molecules. With an increase in concentration and interaction time, surface precipitation occurred. For chemisorption, adsorption was an exothermic and entropy driven process and maximum adsorption was achieved at pH</span></span> <!-->9.0 due to more active sites. In an acidic environment, such as pH<!--> <span>3.0, adsorption was achieved via chemisorption and hydrophobic bonding. However, a strong basic and higher temperature environment contributes to surface precipitation of basic rare earth hydroxamate. FTIR tests showed the movement of </span><img>CH<sub>2</sub> band position from 2924<!--> <!-->cm<sup>−<!--> <!-->1</sup> to 2920<!--> <!-->cm<sup>−<!--> <!-->1</sup> with increases in pH values from 3.0 to 6.0, 9.0, and 11.0, which corresponds to the status of chemisorbed and surface precipitated OHA, respectively.</p></div>\",\"PeriodicalId\":14022,\"journal\":{\"name\":\"International Journal of Mineral Processing\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-07-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.minpro.2017.05.006\",\"citationCount\":\"21\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Mineral Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0301751617301084\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Earth and Planetary Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Mineral Processing","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0301751617301084","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Earth and Planetary Sciences","Score":null,"Total":0}
A fundamental study of octanohydroxamic acid adsorption on monazite surfaces
The adsorption mechanism of octanohydroxamic acid (OHA) on monazite was studied using kinetic, isotherm, and thermodynamic adsorption tests as well as FTIR, titration, and micro-flotation experiments. The adsorption mechanism was described as a chemisorption/surface precipitation process. At low OHA concentrations, adsorption occurred by chemisorption as a result of the reaction between surface active sites and OHA molecules. With an increase in concentration and interaction time, surface precipitation occurred. For chemisorption, adsorption was an exothermic and entropy driven process and maximum adsorption was achieved at pH 9.0 due to more active sites. In an acidic environment, such as pH 3.0, adsorption was achieved via chemisorption and hydrophobic bonding. However, a strong basic and higher temperature environment contributes to surface precipitation of basic rare earth hydroxamate. FTIR tests showed the movement of CH2 band position from 2924 cm− 1 to 2920 cm− 1 with increases in pH values from 3.0 to 6.0, 9.0, and 11.0, which corresponds to the status of chemisorbed and surface precipitated OHA, respectively.
期刊介绍:
International Journal of Mineral Processing has been discontinued as of the end of 2017, due to the merger with Minerals Engineering.
The International Journal of Mineral Processing covers aspects of the processing of mineral resources such as: Metallic and non-metallic ores, coals, and secondary resources. Topics dealt with include: Geometallurgy, comminution, sizing, classification (in air and water), gravity concentration, flotation, electric and magnetic separation, thickening, filtering, drying, and (bio)hydrometallurgy (when applied to low-grade raw materials), control and automation, waste treatment and disposal. In addition to research papers, the journal publishes review articles, technical notes, and letters to the editor..