从机载激光雷达数据中提取的ICP、CPD和SVR方法对屋顶点云自动测绘的性能评价

Q4 Social Sciences Revista Brasileira de Cartografia Pub Date : 2021-07-08 DOI:10.14393/RBCV73N3-57838
P. Ruiz, C. Almeida, Marcos Benedito Schimalski, E. A. Mitishita, Veraldo Liesenberg
{"title":"从机载激光雷达数据中提取的ICP、CPD和SVR方法对屋顶点云自动测绘的性能评价","authors":"P. Ruiz, C. Almeida, Marcos Benedito Schimalski, E. A. Mitishita, Veraldo Liesenberg","doi":"10.14393/RBCV73N3-57838","DOIUrl":null,"url":null,"abstract":"A partir dos anos 2000, houve um aumento na aquisição de dados LiDAR (Light Detection and Ranging) em áreas urbanas, o que possibilitou diversos estudos e aplicações nas mais variadas áreas, verificando-se um crescimento dos acervos históricos. Com isso, são necessários métodos de processamento robustos para manipulação desses dados. Os métodos de registro de dados laser inserem-se nesse contexto, essenciais para promover a utilização de dados oriundos de distintos equipamentos e datas. Este estudo consiste em avaliar o desempenho de três métodos de registro: Iterative Closest Point (ICP), Coherent Point Drift (CPD) e Support Vector Registration (SVR). A metodologia contempla o pré-processamento dos dados LiDAR para a extração de três telhados de edifícios com características distintas, localizados no campus da UFPR, em Curitiba – PR. Foram utilizados dados do sensor Optech ALTM Pegasus HD 500, com frequência de 300 kHz e altura de voo de 1.600 m, densidade média de 1,71 pontos por m² e IFOV de 25°. Os métodos foram implementados na linguagem Python. Como resultados, foram obtidos os registros, dos quais foram extraídas suas acurácias e tempos de processamento. Os resultados evidenciaram que os métodos CPD e SVR são ótimas alternativas para superar as limitações do ICP, ressaltando-se o desempenho do CPD e a eficiência computacional do SVR, sendo que este último é particularmente adequado para lidar com dados ruidosos.      ","PeriodicalId":36183,"journal":{"name":"Revista Brasileira de Cartografia","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Avaliação do Desempenho dos Métodos ICP, CPD e SVR para Registro Automático de Nuvens de Pontos Relativas a Telhados Extraídas de Dados LiDAR Aerotransportados\",\"authors\":\"P. Ruiz, C. Almeida, Marcos Benedito Schimalski, E. A. Mitishita, Veraldo Liesenberg\",\"doi\":\"10.14393/RBCV73N3-57838\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A partir dos anos 2000, houve um aumento na aquisição de dados LiDAR (Light Detection and Ranging) em áreas urbanas, o que possibilitou diversos estudos e aplicações nas mais variadas áreas, verificando-se um crescimento dos acervos históricos. Com isso, são necessários métodos de processamento robustos para manipulação desses dados. Os métodos de registro de dados laser inserem-se nesse contexto, essenciais para promover a utilização de dados oriundos de distintos equipamentos e datas. Este estudo consiste em avaliar o desempenho de três métodos de registro: Iterative Closest Point (ICP), Coherent Point Drift (CPD) e Support Vector Registration (SVR). A metodologia contempla o pré-processamento dos dados LiDAR para a extração de três telhados de edifícios com características distintas, localizados no campus da UFPR, em Curitiba – PR. Foram utilizados dados do sensor Optech ALTM Pegasus HD 500, com frequência de 300 kHz e altura de voo de 1.600 m, densidade média de 1,71 pontos por m² e IFOV de 25°. Os métodos foram implementados na linguagem Python. Como resultados, foram obtidos os registros, dos quais foram extraídas suas acurácias e tempos de processamento. Os resultados evidenciaram que os métodos CPD e SVR são ótimas alternativas para superar as limitações do ICP, ressaltando-se o desempenho do CPD e a eficiência computacional do SVR, sendo que este último é particularmente adequado para lidar com dados ruidosos.      \",\"PeriodicalId\":36183,\"journal\":{\"name\":\"Revista Brasileira de Cartografia\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-07-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Revista Brasileira de Cartografia\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.14393/RBCV73N3-57838\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Social Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Revista Brasileira de Cartografia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14393/RBCV73N3-57838","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Social Sciences","Score":null,"Total":0}
引用次数: 0

摘要

从2000年代开始,城市地区的激光雷达(光探测和测距)数据采集有所增加,这使得在最多样化的地区进行了几项研究和应用,验证了历史收集的增加。因此,需要稳健的处理方法来处理这些数据。激光数据记录方法是这一背景的一部分,对于促进使用不同设备和日期的数据至关重要。本研究包括评估三种记录方法的性能:迭代最近点(ICP)、相干点漂移(CPD)和支持向量配准(SVR)。该方法包括对激光雷达数据进行预处理,以提取位于佛罗里达州库里蒂巴市UFPR校园内的具有不同特征的建筑物的三个屋顶。使用了Optech ALTM Pegasus HD 500传感器的数据,频率为300kHz,飞行高度为1600m,平均密度为1.71点/m²,IFOV为25°。这些方法是用Python语言实现的。结果,获得了记录,从中提取了它们的准确性和处理时间。结果表明,CPD和SVR方法是克服PCI局限性的好方法,突出了CPD的性能和SVR的计算效率,后者特别适合处理噪声数据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Avaliação do Desempenho dos Métodos ICP, CPD e SVR para Registro Automático de Nuvens de Pontos Relativas a Telhados Extraídas de Dados LiDAR Aerotransportados
A partir dos anos 2000, houve um aumento na aquisição de dados LiDAR (Light Detection and Ranging) em áreas urbanas, o que possibilitou diversos estudos e aplicações nas mais variadas áreas, verificando-se um crescimento dos acervos históricos. Com isso, são necessários métodos de processamento robustos para manipulação desses dados. Os métodos de registro de dados laser inserem-se nesse contexto, essenciais para promover a utilização de dados oriundos de distintos equipamentos e datas. Este estudo consiste em avaliar o desempenho de três métodos de registro: Iterative Closest Point (ICP), Coherent Point Drift (CPD) e Support Vector Registration (SVR). A metodologia contempla o pré-processamento dos dados LiDAR para a extração de três telhados de edifícios com características distintas, localizados no campus da UFPR, em Curitiba – PR. Foram utilizados dados do sensor Optech ALTM Pegasus HD 500, com frequência de 300 kHz e altura de voo de 1.600 m, densidade média de 1,71 pontos por m² e IFOV de 25°. Os métodos foram implementados na linguagem Python. Como resultados, foram obtidos os registros, dos quais foram extraídas suas acurácias e tempos de processamento. Os resultados evidenciaram que os métodos CPD e SVR são ótimas alternativas para superar as limitações do ICP, ressaltando-se o desempenho do CPD e a eficiência computacional do SVR, sendo que este último é particularmente adequado para lidar com dados ruidosos.      
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Revista Brasileira de Cartografia
Revista Brasileira de Cartografia Earth and Planetary Sciences-Earth-Surface Processes
CiteScore
0.70
自引率
0.00%
发文量
37
审稿时长
16 weeks
期刊最新文献
Semantic Alignment of Official and Collaborative Geospatial Data: A Case Study in Brazil Padrão Espacial de Ocorrência de Plantação de Mandioca na Amazônia Brasileira: a Região Oeste do Estado do Pará Generation of a Digital Terrain Model (DTM) Fusioning WV-2 Images and RTK-derived Topobathymetric Data Tecnologia de Geoinformação na Identificação de Lugares Ótimos para Lazer e Cultura em Divinópolis, MG: Uma Abordagem Didática Revisitando o variograma e covariância
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1