Haozeng Guo, Jixian Dong, Sha Wang, Lijie Qiao, Bo Wang, Huangin Liu, Biao Wang
{"title":"多通道滚筒干燥机两相流流型分布图的实验研究与预测","authors":"Haozeng Guo, Jixian Dong, Sha Wang, Lijie Qiao, Bo Wang, Huangin Liu, Biao Wang","doi":"10.32964/tj22.7.455","DOIUrl":null,"url":null,"abstract":"The multi-channel cylinder dryer (MCD) is designed to improve heat transfer. Although there are numerous research studies on the pressure drop, heat transfer characteristics, and flow pattern in static state of MCD, there is little research on the flow pattern in the rotating state. \nIn this paper, the distribution of flow pattern in MCD under different rotating speeds and steam mass flow rates is studied. Furthermore, the logistic regression method (LR) is used to predict the flow pattern diagrams. The results show that in the front section of the flow channel, the flow pattern is basically annular flow, which is not affected by mass flow rate and rotating speed. On the other hand, wavy flow, vortex flow, slug flow, and bubble flow can be observed when the fluid enters the middle and the end section. The higher the rotating speed and the steam mass flow rate, the more the flow pattern tends to be an annular and wavy flow. At the end of the passage, the flow pattern is mainly slug flow. The predicted flow pattern diagrams are in good agreement with the experimental result, and to obtain an effective flow pattern in the middle and the end section of the flow channel, the influence of increasing rotating speed is greater than that of increasing steam mass flow rate. However, the specific rotating speed, steam mass flow rate, and other parameters should still be set by combining with the actual situation. This work can provide some references for the further study of MCD flow characteristics.","PeriodicalId":22255,"journal":{"name":"Tappi Journal","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Experimental study and prediction of two-phase flow pattern distribution diagrams in multi-channel cylinder dryer\",\"authors\":\"Haozeng Guo, Jixian Dong, Sha Wang, Lijie Qiao, Bo Wang, Huangin Liu, Biao Wang\",\"doi\":\"10.32964/tj22.7.455\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The multi-channel cylinder dryer (MCD) is designed to improve heat transfer. Although there are numerous research studies on the pressure drop, heat transfer characteristics, and flow pattern in static state of MCD, there is little research on the flow pattern in the rotating state. \\nIn this paper, the distribution of flow pattern in MCD under different rotating speeds and steam mass flow rates is studied. Furthermore, the logistic regression method (LR) is used to predict the flow pattern diagrams. The results show that in the front section of the flow channel, the flow pattern is basically annular flow, which is not affected by mass flow rate and rotating speed. On the other hand, wavy flow, vortex flow, slug flow, and bubble flow can be observed when the fluid enters the middle and the end section. The higher the rotating speed and the steam mass flow rate, the more the flow pattern tends to be an annular and wavy flow. At the end of the passage, the flow pattern is mainly slug flow. The predicted flow pattern diagrams are in good agreement with the experimental result, and to obtain an effective flow pattern in the middle and the end section of the flow channel, the influence of increasing rotating speed is greater than that of increasing steam mass flow rate. However, the specific rotating speed, steam mass flow rate, and other parameters should still be set by combining with the actual situation. This work can provide some references for the further study of MCD flow characteristics.\",\"PeriodicalId\":22255,\"journal\":{\"name\":\"Tappi Journal\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2023-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Tappi Journal\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.32964/tj22.7.455\",\"RegionNum\":4,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATERIALS SCIENCE, PAPER & WOOD\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tappi Journal","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.32964/tj22.7.455","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, PAPER & WOOD","Score":null,"Total":0}
Experimental study and prediction of two-phase flow pattern distribution diagrams in multi-channel cylinder dryer
The multi-channel cylinder dryer (MCD) is designed to improve heat transfer. Although there are numerous research studies on the pressure drop, heat transfer characteristics, and flow pattern in static state of MCD, there is little research on the flow pattern in the rotating state.
In this paper, the distribution of flow pattern in MCD under different rotating speeds and steam mass flow rates is studied. Furthermore, the logistic regression method (LR) is used to predict the flow pattern diagrams. The results show that in the front section of the flow channel, the flow pattern is basically annular flow, which is not affected by mass flow rate and rotating speed. On the other hand, wavy flow, vortex flow, slug flow, and bubble flow can be observed when the fluid enters the middle and the end section. The higher the rotating speed and the steam mass flow rate, the more the flow pattern tends to be an annular and wavy flow. At the end of the passage, the flow pattern is mainly slug flow. The predicted flow pattern diagrams are in good agreement with the experimental result, and to obtain an effective flow pattern in the middle and the end section of the flow channel, the influence of increasing rotating speed is greater than that of increasing steam mass flow rate. However, the specific rotating speed, steam mass flow rate, and other parameters should still be set by combining with the actual situation. This work can provide some references for the further study of MCD flow characteristics.
期刊介绍:
An internationally recognized technical publication for over 60 years, TAPPI Journal (TJ) publishes the latest and most relevant research on the forest products and related industries. A stringent peer-review process and distinguished editorial board of academic and industry experts set TAPPI Journal apart as a reliable source for impactful basic and applied research and technical reviews.
Available at no charge to TAPPI members, each issue of TAPPI Journal features research in pulp, paper, packaging, tissue, nonwovens, converting, bioenergy, nanotechnology or other innovative cellulosic-based products and technologies. Publishing in TAPPI Journal delivers your research to a global audience of colleagues, peers and employers.