一种吸音隔热的胶原纤维复合材料

IF 1.3 4区 医学 Q4 MATERIALS SCIENCE, BIOMATERIALS Cellular Polymers Pub Date : 2022-09-27 DOI:10.1177/02624893221130154
Jiaxing Zhang Hui Chen, Z. Shan
{"title":"一种吸音隔热的胶原纤维复合材料","authors":"Jiaxing Zhang Hui Chen, Z. Shan","doi":"10.1177/02624893221130154","DOIUrl":null,"url":null,"abstract":"Using methacrylic acid (MAA) and methyl methacrylate (MMA) as core monomers and polystyrene as the shell layer, polymer hollow microspheres (PHM) with good stability were prepared by using an alkali osmotic swelling method followed by spray drying. The average size of the PHM was approximately 875 nm. As a filling cross-linking agent, the PHM were added to a skin collagen material to disperse and fix, and a “polymer hollow microsphere composite collagen fiber” (PHCC) material was obtained. The results show that the PHM improve the mechanical strength, thermal stability and water resistance of the skin collagen material. The PHCC material has a low thermal conductivity (0.035 W/(K·m)) and excellent sound insulation performance and retains the soft and delicate touch of leather, which has application value in high-grade decorative materials and functional leather. This provides a new approach for developing flexible sound-absorbing thermal insulation materials.","PeriodicalId":9816,"journal":{"name":"Cellular Polymers","volume":"42 1","pages":"3 - 24"},"PeriodicalIF":1.3000,"publicationDate":"2022-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A sound-absorbing and heat-insulating collagen fiber composite material\",\"authors\":\"Jiaxing Zhang Hui Chen, Z. Shan\",\"doi\":\"10.1177/02624893221130154\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Using methacrylic acid (MAA) and methyl methacrylate (MMA) as core monomers and polystyrene as the shell layer, polymer hollow microspheres (PHM) with good stability were prepared by using an alkali osmotic swelling method followed by spray drying. The average size of the PHM was approximately 875 nm. As a filling cross-linking agent, the PHM were added to a skin collagen material to disperse and fix, and a “polymer hollow microsphere composite collagen fiber” (PHCC) material was obtained. The results show that the PHM improve the mechanical strength, thermal stability and water resistance of the skin collagen material. The PHCC material has a low thermal conductivity (0.035 W/(K·m)) and excellent sound insulation performance and retains the soft and delicate touch of leather, which has application value in high-grade decorative materials and functional leather. This provides a new approach for developing flexible sound-absorbing thermal insulation materials.\",\"PeriodicalId\":9816,\"journal\":{\"name\":\"Cellular Polymers\",\"volume\":\"42 1\",\"pages\":\"3 - 24\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2022-09-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cellular Polymers\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1177/02624893221130154\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cellular Polymers","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/02624893221130154","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

以甲基丙烯酸(MAA)和甲基丙烯酸甲酯(MMA)为核心单体,聚苯乙烯为壳层,采用碱渗透溶胀法和喷雾干燥法制备了稳定性良好的聚合物中空微球(PHM)。PHM的平均尺寸约为875nm。将PHM作为填充交联剂加入皮肤胶原材料中进行分散固定,得到“聚合物中空微球复合胶原纤维”(PHCC)材料。结果表明,PHM提高了皮肤胶原材料的机械强度、热稳定性和耐水性。PHCC材料具有较低的导热系数(0.035W/(K·m))和优异的隔音性能,并保留了皮革柔软细腻的触感,在高档装饰材料和功能皮革中具有应用价值。这为开发柔性吸声隔热材料提供了一种新的途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A sound-absorbing and heat-insulating collagen fiber composite material
Using methacrylic acid (MAA) and methyl methacrylate (MMA) as core monomers and polystyrene as the shell layer, polymer hollow microspheres (PHM) with good stability were prepared by using an alkali osmotic swelling method followed by spray drying. The average size of the PHM was approximately 875 nm. As a filling cross-linking agent, the PHM were added to a skin collagen material to disperse and fix, and a “polymer hollow microsphere composite collagen fiber” (PHCC) material was obtained. The results show that the PHM improve the mechanical strength, thermal stability and water resistance of the skin collagen material. The PHCC material has a low thermal conductivity (0.035 W/(K·m)) and excellent sound insulation performance and retains the soft and delicate touch of leather, which has application value in high-grade decorative materials and functional leather. This provides a new approach for developing flexible sound-absorbing thermal insulation materials.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Cellular Polymers
Cellular Polymers 工程技术-材料科学:生物材料
CiteScore
3.10
自引率
0.00%
发文量
9
审稿时长
3 months
期刊介绍: Cellular Polymers is concerned primarily with the science of foamed materials, the technology and state of the art for processing and fabricating, the engineering techniques and principles of the machines used to produce them economically, and their applications in varied and wide ranging uses where they are making an increasingly valuable contribution. Potential problems for the industry are also covered, including fire performance of materials, CFC-replacement technology, recycling and environmental legislation. Reviews of technical and commercial advances in the manufacturing and application technologies are also included. Cellular Polymers covers these and other related topics and also pays particular attention to the ways in which the science and technology of cellular polymers is being developed throughout the world.
期刊最新文献
The impact performance of density-graded polyurea elastomeric foams CONFERENCES AND SEMINARS ISOPA’s New Role PATENTS ABSTRACTS Experiments and Modelling of the Expansion of Crosslinked Polyethylene Foams
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1